Cell Line Generation: iPS Cell


Crosstalk: Inflammation in Parkinson’s disease (PD) in a humanized in vitro model

Parkinson’s Disease (PD) is the most common neurodegenerative movement disorder. It is characterized by motor impairment such as slowness of movements, shaking and gait disturbances. Age is the most consistent risk factor for PD, and as we have an aging population, it is of upmost importance that we find therapies to limit the social, economic […]

Developing a drug-screening system for Autism Spectrum Disorders using human neurons

Autism and autism spectrum disorders (ASD) are complex neurodevelopmental diseases that affect 1 in 150 children in the United States. Such diseases are mainly characterized by deficits in verbal communication, impaired social interaction, and limited and repetitive interests and behavior. Because autism is a complex spectrum of disorders, a different combination of genetic mutations is […]

Epithelial progenitors and the stromal niche as therapeutic targets in lung disease

Chronic lung disease is an enormous societal and medical problem in California and the nation as a whole, representing the third most likely cause of death. Treatment costs were $389.2 billion in 2011 and are expected to reach $832.9 billion in 2021 according to the Milken Institute. Chronic lung diseases cover a spectrum of disorders […]

Development of Cellular Therapies for Retinal Disease

The long term goal of our research program is regeneration of the diseased eye. Age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa are leading causes of blindness for which there are no effective treatments for the majority of cases. Loss of vision is due to progressive degeneration of the photoreceptor cells, or loss of cells […]

In vitro reprogramming of mouse and human somatic cells to an embryonic state

Embryonic stem (ES) cells are remarkable cells in that they can replicate themselves indefinitely and have the potential to turn into all possible cell type of the body under appropriate environmental conditions. These characteristics make ES cells a unique tool to study development in the culture dish and put them at center stage for regenerative […]

Reprogramming of human somatic cells back to pluripotent embryonic stem cells

The ability to dedifferentiate or reverse lineage-committed cells to pluripotent/multipotent cells might overcome many of the obstacles (e.g. cell sources, immunocompatibility and bioethical concerns) associated with using other ES and adult stem cells in clinical applications. With an efficient dedifferentiation process, it is conceivable that healthy, abundant and easily accessible somatic cells could be reprogrammed […]

Reprogramming of human somatic cells back to pluripotent embryonic stem cells

The ability to dedifferentiate or reverse lineage-committed cells to pluripotent/multipotent cells might overcome many of the obstacles (e.g. cell sources, immunocompatibility and bioethical concerns) associated with using other ES and adult stem cells in clinical applications. With an efficient dedifferentiation process, it is conceivable that healthy, abundant and easily accessible somatic cells could be reprogrammed […]

Curing Hematological Diseases

The primary aim of this project is to develop treatments for incurable diseases of the blood and immune system. X-linked Severe Combined Immunodeficiency (X-SCID) and Fanconi anemia (FA) are two blood diseases where mutations in a single gene results in the disease. XSCID, more commonly known as the “bubble boy” disease, is characterized by a […]

Maximizing the Safety of Induced Pluripotent Stem Cells as an Infusion Therapy: Limiting the Mutagenic Threat of Retroelement Retrotransposition during iPSC Generation, Expansion and Differentiation

The ability to convert human skin cells to induced pluripotent stem cells (IPSCs) represents a seminal break-through in stem cell biology. This advance effectively circumvents the problem of immune rejection because the patient’s own skin cells can be used to produce iPSCs. This exciting technology could accelerate treatments for a number of presently incurable diseases. […]

Autologous Retinal Pigmented Epithelial Cells Derived from Induced Pluripotent Stem Cells for the Treatment of Atrophic Age Related Macular Degeneration

The leading cause of visual loss in Americans over the age of 65 is age related macular degeneration (AMD) which occurs in both a “wet” and a “dry” form. Both forms of the disease are associated with loss of cells called retinal pigmented epithelium (RPE) which can lead to profound loss of central vision. Currently, […]