Cell Line Generation: iPS Cell


Stem Cell-Based Therapy for Cartilage Regeneration and Osteoarthritis

Arthritis is the result of degeneration of cartilage (the tissue lining the joints) and leads to pain and limitation of function. Arthritis and other rheumatic diseases are among the most common of all health conditions and are the number one cause of disability in the United States. The annual economic impact of arthritis in the […]

Developing induced pluripotent stem cells into human therapeutics and disease models

Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and differentiate into all the cell types in the human body, and thus hold great promise for cell replacement therapy. However, one major problem for hESC-based therapy is that the cells derived from hESCs will be rejected by the recipient and can only be tolerated under […]

Using patient-specific iPSC derived dopaminergic neurons to overcome a major bottleneck in Parkinson’s disease research and drug discovery

The goals of this study are to develop patient-specific induced pluripotent cell lines (iPSCs) from patients with Parkinson’s disease (PD) with defined mutations and sporadic forms of the disease. Recent groundbreaking discoveries allow us now to use adult human skin cells, transduce them with specific genes, and generate cells that exhibit characteristics of embryonic stem […]

Engineering Embryonic Stem Cell Allografts for Operational Tolerance

Stem cells, like all transplants not derived from an identical twin, are subject to scrutiny by the immune system and, without medical interventions that suppress the immune system, are usually killed after transplantation. However, rare exceptions to this rule exist because a small fraction of transplant patients has been able to maintain their transplant in […]

Thymus based tolerance to stem cell therapies

This proposal focuses on the role of the immune system in transplantation of derivatives of human pluripotent stem cells (hPSCs). A critical roadblock to successful cell replacement therapies, no matter what the disease or injury, is the fact that the immune system’s main function is to prevent the introduction of foreign substances into our bodies. […]

Microfluidic Platform for Screening Chemically Defined Conditions that Facilitate Clonal Expansion of Human Pluripotent Stem Cells

Human pluripotent stem cells (hPSCs) hold a great potential to treat many devastating injuries and diseases. However, current hPSC cloning still faces challenges in creating animal product-free culture conditions for performing genetic manipulation and induced differentiation of hPSCs for cell-based therapy. In order to obtain the ideal culture conditions for hPSC cloning, microfluidic technology can […]

Directed Evolution of Novel AAV Variants for Enhanced Gene Targeting in Pluripotent Human Stem Cells and Investigation of Dopaminergic Neuron Differentiation

Human embryonic stem cells (hESCs) and induced pluripotent stem (iPS) cells have considerable potential as sources of differentiated cells for numerous biomedical applications. The ability to introduce targeted changes into the DNA of these cells – a process known as gene targeting – would have very broad implications. For example, mutations could readily be introduced […]

The Gladstone CIRM Shared Human Embryonic Stem Cell Core Laboratory

The CIRM Shared Human Embryonic Stem Cell Core Laboratory will provide shared research facilities for use by California scientists. This laboratory will be hosted by a research institution focused on basic research into three of the most important medical problems of modern times: cardiovascular disease, AIDS, and neurodegenerative disorders. Each of these research areas addresses […]

CIRM Shared Research Laboratories

Our plan is to establish a ~ 4,700 sq. ft. shared research laboratory dedicated to the experimental manipulation and ultimate clinical application of human embryonic stem cells (hESC). This Shared Research Laboratory (SRL) is centrally located on the main campus. The SRL will be used by researchers focused on understanding how hESCs are induced to […]

USC Center for Stem Cell and Regenerative Medicine: Shared Research Laboratory and Course in Current Protocols in Human Embryonic Stem Cell Research

To realize the potential of human embryonic stem cells (hESC) in research and medicine, it is essential to disseminate state of the art technology in this field to the scientific community at large. The Shared Research Laboratory (SRL) of the Center for Stem Cell and Regenerative Medicine (CSCRM) at the University of Southern California will […]