Cell Line Generation: iPS Cell


Molecules to Correct Aberrant RNA Signature in Human Diseased Neurons

Approximately 5,600 people in the U.S. are diagnosed with ALS each year. The incidence of ALS is two per 100,000 people, and it is estimated that as many as 30,000 Americans may have the disease at any given time. There are no effective therapies of ALS to-date. Recent genetic discoveries have pinpointed mutations that lead […]

Use of human iPS cells to study spinal muscular atrophy

Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders that cause infant mortality. SMA is caused by loss of the Survival of Motor Neuron (SMN) protein, resulting in motor neuron (MN) degeneration in the spinal cord. Although SMN protein plays diverse roles in RNA metabolism and is expressed in all cells, […]

Correlated time-lapse imaging and single cell molecular analysis of human embryo development

We understand little about human development especially at the earliest stages. Yet human developmental biology is very important to stem cell biology and regenerative medicine for two reasons: 1) Understanding human developmental pathways especially of embryonic differentiation will inform our efforts to derive pluripotent stem cells and differentiate them to stable progenitors that are suitable […]

Discovery of mechanisms that control epigenetic states in human reprogramming and pluripotent cells

The CIRM Basic Biology Award III was developed to support basic research that enables the realization of the full potential of human stem cells and reprogrammed cells for therapies and as tools for biomedical innovation. This is particularly important since many fundamental issues related to the regulation of stem cell fate and reprogramming, especially with […]

Functional characterization of mutational load in nuclear reprogramming and differentiation

One of the most potentially powerful aspects of regenerative medicine is stem cell therapy. In this therapy, healthy tissues derived from stem cells will be implanted into patients with damaged tissue in order to restore function. However, there is currently a risk of immune rejection. Human induced pluripotent stem (hiPS) cells have the potential to […]

Triplet Repeat Instability in Human iPSCs

Over twenty human genetic diseases are caused by expansion of simple DNA sequences composed of repeats of three nucleotides (such as CAG, CTG, CGG and GAA) within essential genes. These repeats can occur within the region of a gene that encodes the protein, generally resulting in proteins with large stretches of repeats of just one […]

Neural and general splicing factors control self-renewal, neural survival and differentiation

Human embryonic and patient-specific induced pluripotent stem cells have the remarkable capacity to differentiate into many cell-types, including neurons, thus enabling the modeling of human neurological diseases in vitro, and permit the screening of molecules to correct diseases. Maintaining the pluripotent state of the stem cell, directing the stem cell towards a neuronal lineage, keeping […]

Elucidating Molecular Basis of Hypertrophic Cardiomyopathy with Human Induced Pluripotent Stem Cells

Familial hypertrophic cardiomyopathy (HCM) is the leading cause of sudden cardiac death in young people, including trained athletes, and is the most common inherited heart defect. Until now, studies in humans with HCM have been limited by a variety of factors, including variable environmental stimuli which may differ between individuals (e.g., diet, exercise, and lifestyle), […]

Generation and characterization of corticospinal neurons from human embryonic stem cells

A major goal of stem cell research is to generate various functional human cell types that can be used to better understand how these cells work and to use them directly in therapies. There are currently no effective treatments, let alone a cure, for many neurological conditions. Two particular devastating neurological conditions, spinal cord injury […]

Molecular Mechanisms Underlying Human Cardiac Cell Junction Maturation and Disease Using Human iPSC

Heart disease is the number one cause of death and disability in California and in the United States. Especially devastating is Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), an inherited form of heart disease associated with a high frequency of arrhythmias and sudden cardiac death in young people, including young athletes, who despite their appearance of health […]