Disease Focus: Neurological Disorders


CRISPR/dCas9 mutant targeting SNCA promoter for downregulation of alpha-synuclein expression as a novel therapeutic approach for Parkinson’s disease

Research Objective Discovery of a novel therapeutic candidate for Parkinson’s disease which modifies gene expression using human stem cell-derived neurons to halt the neurodegenerative disease process. Impact Stopping the neurodegenerative process of Parkinson’s disease is a critical unmet medical need. Our approach is based on novel gene engineering technology that modifies expression of key target […]

hNSC-mediated delivery of ApiCCT1 as a candidate therapeutic for Huntington’s disease

Research Objective The therapeutic candidate is a human Neural Stem Cell that secretes a protein, ApiCCT1, that aids in the prevention of disease phenotypes, for application in treatment of Huntington's disease (HD). Impact No treatment currently exists that can slow or prevent the unrelenting progression of Huntington’s disease, a devastating brain disease, therefore a completely […]

Autologous cell therapy for Parkinson’s disease using iPSC-derived DA neurons

Research Objective Autologous human dopaminergic neurons derived from patient-specific induced pluripotent stem cells Impact Parkinson's disease Major Proposed Activities Characterize differentiation from all 10 patient cell lines Characterize functionality of patient neurons matured in vitro Immunogenicity assessment Cryopreservation feasibility testing Investigate dose response in vivo Detect dopamine release in vivo Thousands of Californians suffer from […]

MSC delivery of an artificial transcription factor to the brain as a treatment for Angelman Syndrome

Research Objective Mesenchymal stem cells will be used to deliver an artificial transcription factor to neurons in the brain to treat a genetic disease. Impact It could lead directly to a treatment for Angelman Syndrome, but the approach could be used to alter gene expression in almost any brain disorder. It could overcome the brain […]

Scalable, Defined Production of Oligodendrocyte Precursor Cells to Treat Neural Disease and Injury

Research Objective The goal of this proposal is to develop an optimized, scalable process to manufacture high quality oligodendrocyte precursor cells (OPCs) from human pluripotent stem cells for treating human disease. Impact OPCs have therapeutic potential for spinal cord injury, restoration of cognitive function after cancer radiation therapy, inherited demyelinating disease, and potentially multiple sclerosis. […]

A new phenotypic screening platform that identifies biologically-relevant targets and lead compounds for the treatment of Parkinson’s disease

Research Objective Demonstrate that our HitFinder™ library can be screened for phenotypic changes in A53T-IPSC-derived dopaminergic neurons and use a secondary handle to identify the targets responsible. Impact This technology combines phenotypic screening and target-ID eliminating the need to bias assays and/or screening libraries permitting application directly in iPSC-derived cells. Major Proposed Activities Prepare screening […]

An exosome-based translational strategy to mitigate Alzheimer’s disease neuropathology

Research Objective These studies will determine whether stem cell derived exosomes (nano-scale vesicles) can be used to treat the symptoms of Alzheimer’s disease (AD). Impact Our stem cell-derived exosome therapy will provide a viable approach to ameliorate the relentless progression of AD that severely impacts quality of life for millions of patients and their families. […]

Reverse transcriptase inhibitors as a novel therapeutic approach for neurological autoimmune disorders

Research Objective We found that approved anti-retroviral drugs could stop inflammation and block neurodegeneration. We propose to validate the re-purpose efficacy of these clinically-approved retroviral drugs. Impact We have identified an unexpected cause to a brain inflammation and a potential simple treatment. Our research could help millions of patients affected by a broad range neuro-immunological […]

Organoid Modeling of Human Cortical Microcircuits

Research Objective The proposed studies will develop three-dimensional cell culture methods for creating human brain neural circuits for disease research and drug discovery. Impact The proposed research will develop a new research platform for studying how neurons in the human brain function, how neurological disease subverts this activity, and how we might find new therapies. […]

Blood Brain Barrier (BBB)-on-Chip: Development and validation of a novel iPS-based microfluidic model of the human BBB

Research Objective to develop and systematically characterize a novel model of the human BBB using a microfluidic device (chip) and cells derived from induced pluripotent stem cells (iPSCs). Impact The success of the proposed research will provide a novel, highly attractive model for screening of molecules to treat neurological disorders and for personalized medicine in […]