Therapeutic/Technology: Technology


Functional Genomic Analysis of Chemically Defined Human Embryonic Stem Cells

Regenerative medicine holds the promise that tissues can be engineered in vitro and then transplanted into patients to treat debilitating diseases. Human Embryonic Stem Cells differentiate into a wide array of adult tissue types and are thought to be the best hope for future regenerative therapies. This grant has three main goals: 1. The creation […]

Derivation and characterization of human ES cells from FSHD embryos

Facioscapulohumeral muscular dystrophy (FSHD) is the third most common hereditary muscular dystrophy. It is autosomal dominant, meaning that if one of the parents has the disease, their children have a 50:50 chance of getting it, too. FSHD is characterized by progressive weakness and atrophy of facial, shoulder and upper arm musculature, which can spread to […]

Hair Cells and Spiral Ganglion Neuron Differentiation from Human Embryonic Stem Cells

Hair cells (HCs) convert sound and balance signals into electrical impulses in the inner ear, including the cochlea and the vestibular endorgans, with remarkable precision and sensitivity. Our long-term goal is to stimulate HC regeneration in human inner ears and to enable the functional innervations of HCs by neurons. Hair cells are terminally-differentiated cells. Once […]

Induction of pluripotency in fibroblasts by fusion with enucleated human embryonic stem cell syncytia

Embryonic stem cells are pluripotent which means they can in principle be instructed to become every cell type in the body. Moreover, they can produce an infinite number of daughter cells. Therefore, human embryonic stem cells have great potential as a cell source for regenerative therapies of a wide range of diseases, some of which […]

Role of the tumor suppressor gene, p16INK4a, in regulating stem cell phenotypes in embryonic stem cells and human epithelial cells.

The roles of stem cells are to generate the organs of the body during development and to stand ready to repair those organs through repopulation after injury. In some cases these properties are not correctly regulated and cells with stem cell properties expand in number. Recent work is demonstrating that the genes that control stem […]

Production of Oocytes from Human ES Cells

The ability of human embryonic stem (hES) cells to form a wide variety of adult human cell types offers hope for development of novel therapies to treat human degenerative diseases such as Alzheimer’s, diabetes, and muscular dystrophy. However, to prevent rejection of the transplanted cells by a patient’s immune system it will be important to […]

Mitochondrial Dysfunction in Embryonic Stem Cells

Mitochondrial Dysfunction in Embryonic Stem Cells {REDACTED} A major concern for the utilization of human Embryonic Stem Cells (hESCs) for cell replacement therapy is that with prolonged culture, the capacity of the cells to generate the desired cell types for therapy declines. While the reason for this is currently unknown, our research suggests that an […]

Human Embryonic Stem Cells and Remyelination in a Viral Model of Demyelination

Multiple sclerosis (MS) is the most common neurologic disease affecting young adults under the age of 40 with the majority of MS patients diagnosed in the second or third decade of life. MS is characterized by the gradual loss of the myelin sheath that surrounds and insulates axons that allow for the conduction of nerve […]

Patient-specific cells with nuclear transfer

Somatic cell nuclear transfer (NT) is a powerful research tool with the potential for creating unique cell and tissue sources for studies of disease pathogenesis and regenerative medicine. Creation of pluripotent mouse embryonic stem (ES) cells using NT has been achieved and the prospects for generating human ES cells by NT are promising. However, there […]

Down-Regulation of Alloreactive Immune Responses to hES Cell-Derived Graft Tissues

Human Leukocyte Antigens (HLA) are proteins that are expressed on the surface of almost all cells in the body. Because HLA sequences are highly variable and each person generally has a different set of HLA gene sequences, these cell surface markers serve as the identifiers of “self” vs. “non-self”. If immune cells in the body […]