Heart Disease

Coding Dimension ID: 
295
Coding Dimension path name: 
Heart Disease
Funding Type: 
Comprehensive Grant
Grant Number: 
RC1-00151
Investigator: 
Institution: 
Type: 
PI
ICOC Funds Committed: 
$2 618 704
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 

Cardiovascular disease (CVD) affects more than 71 million Americans and 1.7 million Californians. Recently, engineered cardiovascular tissue grafts, or “patches”, including one made from mouse embryonic stem cells (ESC), have shown promising results as a future therapy for CVD. Our overall goal is to extend these recent results to human ESC as follows.

Aim 1: Apply mechanical stretch and electrical pacemaker-like stimulation to hESC-derived heart cells in order to make them stronger and beat at the same time. Current methods to turn hESC into heart cells do not result in the organization required to generate enough strength to support a weak heart and to avoid irregular heart beats. We will use specially engineered devices to apply mechanical stretch and electrical pacemaker-like stimulation to hESC-derived heart cells in order to strengthen them and make them beat in unison.

Aim 2: Engineer a cardiovascular patch from hESC-derived heart cells in order to make a potential new therapy for heart disease. Recently, heart cells from mouse ESC, supporting structures called scaffolds, and mechanical stretch have successfully been combined to engineer a cardiovascular patch. We will combine the hESC-derived heart cells from Aim 1, scaffolds, and the same stretch and pacemaker-like stimulation as in Aim 1 to engineer a cardiovascular patch. In addition, we will add a specialized substance called VEGF to our patch so that, potentially, a blood supply will form around it after it is implanted on a diseased heart. We believe a blood supply will be necessary to keep our patch healthy, and in turn, this will allow our patch to help a damaged heart pump better.

Aim 3: Assess whether our patch can remain healthy and also strengthen the heart of a rat after it has undergone a heart attack. We will first implant our cardiovascular patch in the rat aorta, the main blood vessel that supplies blood to the body, to test whether the patch remains healthy and whether it can contract and beat on its own. We will first use the aortic position because we feel it will allow us to assess the inherent function of the patch, thus facilitating our efforts to improve its design. After testing in the aortic position, we will implant the patch over damaged heart tissue in a rat that has undergone an experimentally created heart attack. Over a period of several weeks, we will use novel imaging techniques, ultrasonography, echocardiography, and electrocardiography to non-invasively test whether the patch remains healthy and whether the patch helps the damaged heart pump better.

We believe the above aims will address questions relevant to hESC-based cardiovascular therapies and will provide vital information needed for safe and effective future clinical translation. As we will evaluate both federally and non-federally approved cell lines, and thus unlikely to receive federal funding, we will need to rely on the support provided by CIRM to carry out our objectives.

Statement of Benefit to California: 

Cardiovascular disease (CVD) affects more than 1.7 million Californians and 71 million Americans. The societal and financial impacts are tremendous, with CVD accounting annually for an estimated $8 billion in CA and nearly $400 billion in US health care costs.

In the case of chronic illness such as CVD, the state and national health care systems may not be able to meet the needs of patients or control spiraling costs, unless the focus of therapy switches away from maintenance and toward cures. Fortunately, the passage of Proposition 71 in 2004, and the subsequent creation of the California Institute for Regenerative Medicine (CIRM), has created the funding needed to advance human embryonic stem cell (hESC) research that could lead to curative therapies that would benefit both millions of Californians and Americans.

Recently, engineered cardiovascular tissue grafts, made from rat neonatal cardiomyocytes (CM) and cardiomyocytes derived from mouse ESC, have shown promising results as a future therapy for CVD. The overall goal of our proposed research is to extend these recent studies to hESC and engineer a hESC-CM based cardiovascular tissue graft as a regenerative therapy for CVD.

We believe the objectives of our research will benefit the people and the state of California by addressing questions relevant to hESC-based cardiovascular regenerative therapies and will provide vital information needed for safe and efficacious future clinical translation.

Development of cures for diseases such as CVD could potentially improve the California health care system by reducing the long-term health care cost burden on California. In addition, the results of our research may provide an opportunity for California to benefit from royalties, patents, and licensing fees and benefit the California economy by creating projects, jobs, and therapies that will generate millions of dollars in new tax revenues in our state. Finally, stem cell research such as ours could further advance the biotech industry in California, serving as an engine for California’s economic future.

We have assembled a multidisciplinary team of experienced investigators to attack the objectives of our proposed research. At the same time, we will train and mentor a new generation of bright students and junior scientists in the areas of hESC biology, regenerative medicine, and technology development. This ensures that an essential knowledge base will be preserved and passed on to both investigators and patients within and beyond California.

Progress Report: 
  • Specific Aim 1: To electromechanically condition hESC-derived cardiomyocytes.
  • Progress: Over the past year, we have designed and constructed a computer controlled integrated stretch system and electrical pacing system for applying mechanical and electrical stimulation. This system was used in conjunction with a stretchable microelectrode array (sMEA) and shown to successfully support, stretch, and pace primary murine cardiomyocytes (CM). We also have developed a strain array device for cell culture that effectively interfaces the desirable properties of high-throughput microscale fluidic devices with macroscale user-friendly features. One challenge we have encountered with our sMEAs is maintaining electrical continuity of electrodes as cells are stretched. As an alternative to traditional electrical stimulation we have created a system that optically induces electrical activity in hESC-CM. We are now able to optically and non-invasively pace cardiomyocytes differentiated from our modified hESC line.
  • Specific Aim 2: To engineer a hESC-CM based cardiovascular tissue graft.
  • Progress: From our first attempt at engineering a cardiovascular tissue graft as we reported in Year 1, we learned that our grafts would require large populatoins of relatively pure hESC-CMs. As a result, we concentrated our efforts over the past year in developing a more efficient differentiation method for producing larger yields and quantities of hESC-CM. Our method produces hESC-CM in a directed manner under feeder-free and serum-free conditions by controlling multiple cardiomyogenic developmental pathways. Also, in a collaborative effort, we are engineering a novel method for sorting cardiomyocytes. In order to promote improved viability of hESC-CM in our tissue grafts, co-transplantation with hESC-derived endothelial cells (hESC-EC), as opposed to VEGF alone, will likely be needed as shown recently by others. Over the past year, we have shown that we can produce hESC-EC and that their survival in the heart is enhanced by activation of acetylcholine receptors that lead to activation of pro-survival and anti-apoptosis pathways. Finally, in order to control spatial orientation of hESC-CM within our tissue grafts, we have demonstrated on-demand micropatterning of matrix proteins for cell localization and stem cell fate determination. We have illustrated the utility of a cantilever-based nano-contact printing technology for cellular patterning, mESC renewal, and mESC fate specification. We are currently extending our results to undifferentiated hESC and hESC-CM.
  • Specific Aim 3: To assess tissue graft viability and function in a small animal model.
  • Progress: Over the past year, we created hESC-CM based tissue grafts in linear form. In order to quantify the loss of cardiac function between healthy and diseased hearts, we have recently developed a novel in vitro hybrid experimental/computational system to measure active force generation in ventricular slices of rodent hearts. Quantification of the loss of cardiac function will guide us in determining the numbers of hESC-CM needed for producing grafts with varying force generating capacity. Finally, as outlined in our original proposal, we will first implant our tissue grafts in rat aortas as a novel test-bed to assess the graft’s inherent function while minimizing the confounding effects of underlying cardiac contractions. Over the past year we have successfully implanted decellularized aortic patches in rat aortas and are currently working on adding hESC-CM and hESC-EC to the patches to assess their viability and function.
  • In summary, in the second year of our project we have made strong progress on all three of our specific aims. Based on our current results, we anticipate we will continue to make significant progress in engineering a robust and functional cardiovascular tissue graft.
  • Specific Aim 1: To electromechanically condition hESC-derived cardiomyocyte(CM).
  • Progress: Over the past year, we tested, validated, and published an integrated strain and electrical pacing system that we designed and constructed. As mentioned in our previous reports, one challenge we encountered with our electromechanical devices is maintaining electrical continuity of electrodes as cells are stretched. As an alternative to traditional electrical stimulation, with collaborators at Stanford, we have created a system that optically induces electrical activity in hESC-CM by introducing light activated channelrhodopsin-2 (ChR2), a cationic channel, into undifferentiated hESC. In our initial manuscript we have also demonstrated the effects of light stimulation on a whole heart computational model in which we have virtually injected light-responsive hESC-CM in various areas of the simulated heart.
  • Specific Aim 2: To engineer a hESC-CM based cardiovascular tissue graft.
  • Progress: From our first attempt at engineering a cardiovascular tissue graft as we reported in Years 1, 2, and 3 we learned that our grafts would require large populations of relatively pure hESC-CMs. As a result, we’ve continued our efforts in developing a more efficient differentiation method for producing larger yields and quantities of hESC-CM. Our method produces hESC-CM and iPSC-CM in a directed manner under feeder-free, serum-free, and monolayer conditions by controlling TGF-beta/Activin, BMP, Wnt, and FGF pathways. We have used our differentiation protocols to contribute cardiomyocytes to our collaborators, which has resulted in one published manuscript and two submitted publications. Also, with our collaborator at UC Berkeley, we have engineered a novel method for identifying CMs based on their electrical signals and have reported our technology in one accepted manuscript and one under review.
  • Specific Aim 3: To assess tissue graft viability and function in a small animal model.
  • Progress: Over the past two years, we created hESC-CM based tissue grafts in linear and circular forms and our now creating grafts that can be optically controlled (see Aim 1 above). As described in our last progress report, in order to quantify the loss of cardiac function between healthy and diseased hearts, we have reported a novel in vitro hybrid experimental/computational system to measure active force generation in healthy ventricular slices of rodent hearts. Quantification of the loss of cardiac function will guide us in determining the numbers of hESC-CM needed for producing grafts with varying force generating capacity. We have also modeled eccentric and concentric cardiac growth through sarcomerogenesis in order to give us insight into how we might terminally mature our hESC-CM grafts. Finally, we have differentiated hESC into CM for one of our collaborators at Stanford and have performed detailed calcium imaging to show engraftment of hESC-CM with human heart tissue. This has given us great insight into how 3D tissue grafts might integrate with human heart tissue.
  • In summary, in the fourth year of our project we made good progress on all three of our specific aims. Based on our current results, we anticipate we will continue to make significant progress in engineering a robust and functional cardiovascular tissue graft as we originally proposed and we will continue our efforts. Undoubtedly, with the support of the CIRM grant over the past four years, we have made great strides towards creating a 3D tissue graft and believe we will demonstrate functional integration, not only with rodent hearts, but with human tissue, all within the coming year.
Funding Type: 
Comprehensive Grant
Grant Number: 
RC1-00132
Investigator: 
ICOC Funds Committed: 
$3 036 002
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 

Adult heart muscle cells retain negligible proliferative capacity and this underlies the inability of the heart to replace muscle cells that are lost to injury, such as infarct, and underlies progression to heart failure. To date, no stem cell therapiy has produced significant cardiomyocyte replacement. Instead, transplanted cells, if they persist at all, produce endothelial cells or fibroblasts and the ameliorating effects on heart function that have been reported have been achieved by improving contractility, perfusion or other processes that are impaired in the failing heart. This proposal is to develop specific reagents and ultimately drugs to stimulate regeneration. Our approach integrates advances in stem cell biology, high-throughput (HT) biology, informatics and proteomics to identify small molecules, proteins and signal transduction pathways that control heart muscle formation from human embryonic stem cells (hESCs). High throughput assays will be developed and implemented to identify genes, signaling proteins, and small molecules that that control important steps in the differentiation, proliferation, and maturation of cardiac cells. Computer modeling and informatics will be used to identify and validate the signaling pathways that direct these critical processes. The discovery of small molecules and pathways will lead to protocols for 1) efficient directed differentiation of cardiomyogenic precursors from hESCs for research into transplantation and toxicology, 2) biotech reagents to stimulate cardiomyocyte renewal through directed differentiation of hESCs, and 3) cellular targets or lead compounds to develop drugs that stimulate regeneration from endogenous cells.

Statement of Benefit to California: 

This proposal is a multidisciplinary collaboration among stem cell biologists, chemists, and engineers to address a critical problem that limits the widespread use of hESC for cardiology applications. Developing the multidisciplinary technology and overcoming the hurdles to application of hESCs to biotech and clinic will benefit California in many ways, including:

Research to discover novel tools to stimulate heart muscle regeneration from hESCs is clinically important. Cardiovascular disease is the single largest cause of death in the U.S. and the assays we will develop and the reagents themselves will be useful tools to direct cardiomyocyte regeneration. This will speed the translation of hESCs to the clinic, specifically by stimulating production of cardiomyocytes and potentially by enhancing their integration and function after engraftment.
Heart regeneration from hESCs probably uses similar cellular proteins and signaling pathways as regeneration of cardiomyocytes from other sources, thus, this research might be broadly applicable to heart muscle repair. Regeneration from endogenous cells remains controversial but these tools should be useful reagents to study and hopefully stimulate endogenous repair.
Bringing the diverse people together (chemists, cell biologists, and engineers) to address a stem cell problem forges new links in the academic community that should be capable of opening new areas of research. These new areas of research will be a important legacy of the stem cell initiative and promises to invigorate academic research.
The technology that we are developing applies the new discipline of chemical biology to stem cell biology, and the merger promises to spin off new areas of investigation and biotech products with the potential to benefit the practice of medicine and the local economy.
Lastly, supporting the leading edge technology and the collaboration will build the California infrastructure of high throughput chemical library screening so that it can be focused on other areas of biomedical research, both stem cell and non-stem cell.

Progress Report: 
  • The goal of this project is to identify small molecules that stimulate cardiomyocyte differentiation from stem cells. The strategy is to use embryonic stem ESC)-derived progenitors to screen for compounds and then optimize their chemical properties to generate molecules that can be used as reagents and potentially as lead compounds to develop drugs to stimulate regeneration in patient hearts. During year 2, progress is reported in: 1) optimizing the biological and pharmaceutical properties of 4 chemically diverse compounds discovered in year 1; 2) patent application filed on these compounds; 3) identification of targets and biological mechanism of action of 2 of the 4 compounds; 4) 1 compound has been validated in hESCs; 5) pilot screening completed of a new stem cell screen to discover molecules that act on late stage progenitors similar to cells thought to exist in the adult heart; 5) new assays developed and screened for discovering modulators of the Wnt pathway that enhance cardiomyocyte production. Thus, there are a total of 8 chemically distinct compounds under study and additional assays have been developed that should bring additional compounds into the pipeline during year 3.
  • This progress report covers FY3 of the project to identify and characterize novel small molecule probes of cardiomyocyte differentiation from stem cells. During FY3, we characterized 11 novel chemical entities that promote cardiomyocyte differentiation. The small, drug-like molecules affect distinct steps in cardiomyocyte differentiation – 5 compounds promote formation of uncommitted cardiac progenitors, 2 stimulated committed cardiac precursors, while 2 compounds act later to stimulate differentiation into cardiomyocytes. Thus, these compounds are novel probes of stem cell differentiation. Some of the compounds are characterized to act upon particular cellular target proteins while the targets of other compounds are unknown. Of the latter class, candidate targets have been characterized by biochemical studies; one of which has been confirmed by RNA interference, yielding a new pathway in cardiac cell formation from stem cells. Three of the chemical series have been described in a patent application. Additional primary hits are being characterized.
  • For FY4, we will continue characterization of a novel compounds. Particular focus will be on 4 chemical entities that promote later stages of human stem cell cardiomyocyte differentiation and on characterizing and discovering additional candidates that act on late-stage differentiation. In addition, we will develop a new pathway screen for a cellular target involved in specifying cardiomyocyte progenitors that have recently been shown to form new myocytes in vivo. Our new compounds are valuable probes of the underlying mechanism(s) responsible for making cardiac cells from stem cells. Moreover, recent data has shown that endogenous stem cells that reside in the adult heart resemble progenitors in the hESC cultures, so certain of our compounds can be considered as targeting cellular proteins and signaling pathways that might be beneficial to stimulate endogenous regeneration. Towards this goal, we will optimize the drug-like properties of the compounds in anticipation of in vivo testing for regenerative potential.
  • This research led to the discovery of small molecules that promote the formation of heart muscle cells from human pluripotent stem cells. The project used high throughput screening technology and medicinal chemistry, similar to that used in pharmaceutical companies, to discover and optimize the molecules. The cellular processes targeted by the compounds were also investigated, and in several cases this research uncovered novel roles for key cellular proteins and signaling pathways, such as Wnt and TGFb signaling, in stem cell differentiation. The compounds will be useful as reagents for cardiomyocyte preparation from stem cells, and patent applications have been filed.
Funding Type: 
Comprehensive Grant
Grant Number: 
RC1-00124
Investigator: 
ICOC Funds Committed: 
$2 524 617
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 

Cardiovascular disease (CVD) is the leading cause of death in the United States. Over one million Americans will suffer from a new or recurrent heart attacks this year and over 40 percent of those will die suddenly. In addition, about two-thirds of the patients develop congestive heart failure; and in people diagnosed with CHF, sudden cardiac death occurs at 6-9 times the general population rate. Heart transplantation remains the only viable solution for severely injured hearts; however, this treatment is limited by the availability of donor hearts. Therefore, alternative strategies to treat end stage heart failure and blocked blood vessels are needed. The objective of this proposal is to determine whether human embryonic stem (hES) cell can be used for repairing the heart. Our collaborator Advanced Cell Technology (ACT) has recently succeeded in identifying conditions for the reproducible isolation of hES cells which have the characteristics of cells which form blood vessels and heart muscle. This proposal will assess whether the hES cells can form new functional blood vessels and repair injured heart muscle in a rat model of heart attacks. Results from these studies will help develop new therapies for treating patients with heart attacks.

Statement of Benefit to California: 

Cardiovascular disease (CVD) is the leading cause of death in California and the United States. Over one million Americans will suffer from a new or recurrent myocardial infarction this year and over 40 percent of those will die suddenly. In addition, about two-thirds of myocardial infarction patients develop congestive heart failure. The 5-year mortality rate for CHF is about 50%, and in people diagnosed with CHF, sudden cardiac death occurs at 6-9 times the general population rate. Heart transplantation remains the only viable solution for severely injured hearts; however, this treatment is limited by the availability of donor hearts. It is estimated that health care costs for CVD is over 18 billion dollars a year. Additionally, the morbidity associated with CVD cost California and the nation billions of dollars a year. Therefore, alternative strategies to treat end stage heart failure and ischemia are needed. (Source: American Heart Association. Heart Disease and Stroke Facts, 2004, Dallas, TX: AHA 2004; American Heart Association. Heart Disease and Stroke Statistics-2006 Update, Dallas, TX: AHA 2006).

The field of regenerative medicine is important to California and the nation. Advances in the technology to find cell based therapies will be revolutionary in their impact on patient care. Human embryonic stem (hES) cells have the potential to become all of the cells in the human body, and their unique properties give researchers the hope that from these primitive cells new therapies can result that may be available in time for the looming health care crisis. This project is focused on a pre-clinical application of a specific hES cell based therapy for myocardial regeneration and an antibody targeting technology to direct stem cells to injured organs. This project will benefit California in several ways including: 1) support for UC trainees, 2) potential of developing important clinical trials in CA based on results from this proposal, and 3) enhancement of the biotechnology industry in CA which would lead to the creation of new jobs in CA and an enhanced tax base.

Progress Report: 
  • Myocardial infarction can lead to death and disability with a 5-year death rate for congestive heart failure of 50%. It is estimated that cardiovascular disease is the leading cause of mortality and morbidity and is predicted to be the leading cause of death worldwide by 2020. Currently, heart transplantation is the only successful treatment for end-stage heart failure; however, the ability to provide this treatment is limited by the availability of donor hearts. Therefore, alternative therapies for both acute and chronic myocardial ischemia need to be developed.
  • Our results demonstrate that human embryonic stem cell (hESC)-derived hemangioblasts can create new blood vessels and improve blood flow in a rodent model of myocardial infarction. We demonstrated that adult stem cells (bone marrow CD34+ cells) can be successfully targeted to injured heart tissue, thus avoiding surgery or invasive catheter based therapies. The antibody technology can be used to target hESC-derived hemangioblasts specifically to injured heart tissue.
  • Further studies are needed to confirm our initial findings, determine whether the new blood vessel formation lead to an increase in heart function and safety studies. Studies are in progress to improve the efficiency and effectiveness of hESC-derived hemangioblasts to create new blood vessels. Additionally, investigations are underway to determine if immunosuppressive drugs will be necessary to increase survival of the hESC-derived hemangioblast. Our initial finding of hES-derived hemangioblasts inducing new blood vessel formation may eventually lead to the development of an unlimited and reliable cell source for renewing blood vessels and treating myocardial infarction.
  • Coronary artery disease (CAD) remains the leading cause of morbidity and mortality worldwide and is predicted to be the leading cause of death by 2020. In the US, it is estimated that cardiovascular disease affects 60 million patients costing the healthcare system approximately $186 billion annually. Approximately two-thirds of patients sustaining a myocardial infarction do not make a complete recovery and often are left with debilitating congestive heart failure. Despite the advances in medical treatment and interventional procedures to reduce mortality in patients with CAD, the number of patients with refractory myocardial ischemia and congestive heart failure is rapidly increasing. For end-stage heart failure, heart transplantation is the only successful treatment. However, the ability to provide this treatment is limited by the availability of donor hearts. Therefore, alternative therapies in the prevention and treatment of end-stage heart failure are needed.
  • Critical to any heart repair strategy is the need to provide vessels to allow for an adequate blood supply to nourish the heart. Our results demonstrate that human embryonic stem cell (hESC)-derived hemangioblasts can create new blood vessels and improve blood flow in a rodent model of myocardial infarction. Studies are in progress to improve the efficiency and effectiveness of hESC-derived hemangioblasts to create new blood vessels. Strategies to improve efficiency and effectiveness include the use of extracellular matrix proteins (components that make up the structural aspect of the heart) to increase the survival of the cells or the use of antibodies to direct and link the cells to the damaged heart muscle. Additionally, to decrease the risk of tumor formation from the hESC-derived hemangioblasts, the hESC-derived hemangioblasts are being cultured to form more mature endothelial cells (cells that mimic the bodies natural cells that produce blood vessels). These cells are being tested to determine whether they can effectively induce blood vessels in the heart. Our initial finding of hES-derived hemangioblasts inducing new blood vessel formation may eventually lead to the development of an unlimited and reliable cell source for renewing blood vessels and treating myocardial infarction.
  • Coronary artery disease (CAD) remains the leading cause of morbidity and mortality worldwide and is predicted to be the leading cause of death by 2020. In the US, it is estimated that cardiovascular disease affects 60 million patients costing the healthcare system approximately $186 billion annually. Approximately two-thirds of patients sustaining a myocardial infarction do not make a complete recovery and often are left with debilitating congestive heart failure. Despite the advances in medical treatment and interventional procedures to reduce mortality in patients with CAD, the number of patients with refractory myocardial ischemia and congestive heart failure is rapidly increasing. For end-stage heart failure, heart transplantation is the only successful treatment. However, the ability to provide this treatment is limited by the availability of donor hearts. Therefore, alternative therapies in the prevention and treatment of end-stage heart failure are needed.
  • Critical to any heart repair strategy is the need to provide vessels to allow for an adequate blood supply to nourish the heart. Our results demonstrate that human embryonic stem cell (hESC)-derived hemangioblasts can create new blood vessels and improve blood flow in a rodent model of myocardial infarction. Subsequent studies with hESC-derived endothelial progenitor cells decreased MI size and improved LV function in a mouse model of myocardial ischemia. Studies are in progress to improve the efficiency and effectiveness of hESC-derived endothelial progenitor cells to create new blood vessels.
  • Strategies to improve efficiency and effectiveness of stem cell therapy include the use of extracellular matrix proteins (components that make up the structural aspect of the heart) to increase the survival of the cells or the use of antibodies to direct and link the cells to the damaged heart muscle. We have demonstrated that antibodies can direct stem cells to injured myocardial tissue. Continued studies are in progress to perform studies needed for the submission of an IND. The development of peptide-modified scaffolds for the treatment of chronic heart failure has produced initial proof of concept studies that a tissue engineering approach for restoration of an injured heart is possible. Additionally, we have demonstrated that extracellular matrix derived peptides can recruit endogenous cardiac stem cells. Further development of a biopolymer scaffold for the treatment of chronic heart failure is in progress.
  • Coronary artery disease (CAD) remains the leading cause of morbidity and mortality worldwide and is predicted to be the leading cause of death by 2020. In the US, it is estimated that cardiovascular disease affects 60 million patients costing the healthcare system approximately $186 billion annually. Approximately two-thirds of patients sustaining a myocardial infarction do not make a complete recovery and often are left with debilitating congestive heart failure. Despite the advances in medical treatment and interventional procedures to reduce mortality in patients with CAD, the number of patients with refractory myocardial ischemia and congestive heart failure is rapidly increasing. For end-stage heart failure, heart transplantation is the only successful treatment. However, the ability to provide this treatment is limited by the availability of donor hearts. Therefore, alternative therapies in the prevention and treatment of end-stage heart failure are needed.
  • Critical to any heart repair strategy is the need to provide vessels to allow for an adequate blood supply to nourish the heart. Our results demonstrate that human embryonic stem cell (hESC)-derived hemangioblasts can create new blood vessels and improve blood flow in a rodent model of myocardial infarction. Subsequent studies with hESC-derived endothelial progenitor cells decreased MI size and improved LV function in a mouse model of myocardial ischemia. Studies are in progress to improve the efficiency and effectiveness of hESC-derived endothelial progenitor cells to create new blood vessels.
  • Strategies to improve efficiency and effectiveness of stem cell therapy include the use of extracellular matrix proteins (components that make up the structural aspect of the heart) to increase the survival of the cells or the use of antibodies to direct and link the cells to the damaged heart muscle. We have demonstrated that antibodies can direct stem cells to injured myocardial tissue. Continued studies are in progress to perform studies needed for the submission of an IND. The development of peptide-modified scaffolds for the treatment of chronic heart failure has produced initial proof of concept studies that a tissue engineering approach for restoration of an injured heart is possible. Additionally, we have demonstrated that extracellular matrix derived peptides can recruit endogenous cardiac stem cells. Further development of a biopolymer scaffold for the treatment of chronic heart failure is in progress.
Funding Type: 
Comprehensive Grant
Grant Number: 
RC1-00104
Investigator: 
ICOC Funds Committed: 
$2 229 140
Disease Focus: 
Heart Disease
Stem Cell Use: 
Embryonic Stem Cell
oldStatus: 
Closed
Public Abstract: 

Five million people in the U.S. suffer with heart failure, at a cost of $30 billion/year. Heart failure occurs when the heart is damaged and becomes unable to meet the demands placed on it. Unlike some tissues, heart muscle does not regenerate. Human embryonic stem cells grow and divide indefinitely while maintaining the potential to develop into many tissues of the body, including heart muscle. They provide an unprecedented opportunity to both study human heart muscle in culture in the laboratory, and advance cell-based therapy for damaged heart muscle. We have developed methods for identifying and isolating specific types of human embryonic stem cells, stimulating them to become human heart muscle cells, and delivering these into the hearts of mice that have had a heart attack. This research will identify those human embryonic stem cells that are best at repairing damaged heart muscle, thereby treating or avoiding heart failure.

Statement of Benefit to California: 

More than 90,000 people in California suffer with heart failure, at a cost of ~$540 million/year. Heart failure occurs when the heart is damaged and becomes unable to meet the demands placed on it. Unlike some tissues, heart muscle does not regenerate. This research will identify human embryonic stem cells that are able to repair damaged heart muscle, thereby treating or avoiding heart failure. The medical treatments developed as a result of these studies will not only benefit the health of Californians with heart failure, but also should result in significant savings in health care costs. This research will push the field of cardiovascular regenerative medicine forward despite the paucity of federal funds, and better prepare us to utilize these funds when they become available in the future.

Progress Report: 
  • Five million people in the U.S. suffer with heart failure, at a cost of $30 billion/year. Heart failure occurs when the heart is damaged and becomes unable to meet the demands placed on it. Unlike some tissues, heart muscle does not regenerate. Human embryonic stem cells grow and divide indefinitely while maintaining the potential to develop into many tissues of the body, including heart muscle. They provide an unprecedented opportunity to both study human heart muscle in culture in the laboratory, and advance cell-based therapy for damaged heart muscle. During the first year of CIRM support, we have developed methods for identifying and isolating specific types of human embryonic stem cells, and stimulating them to become human heart muscle cells. We are currently working to determine the best methods and timing for delivering these cells into the hearts of mice that have had a heart attack. This research will identify those human embryonic stem cells that are best at repairing damaged heart muscle, thereby treating or avoiding heart failure.
  • Five million people in the U.S. suffer with heart failure, at a cost of $30 billion/year. Heart failure occurs when the heart is damaged and becomes unable to meet the demands placed on it. Unlike some tissues, heart muscle does not regenerate. Human embryonic stem cells grow and divide indefinitely while maintaining the potential to develop into many tissues of the body, including heart muscle. They provide an unprecedented opportunity to both study human heart muscle in culture in the laboratory, and advance cell-based therapy for damaged heart muscle. During this year of CIRM support, we have developed methods for identifying and isolating specific types of human embryonic stem cells, and stimulating them to become human heart muscle cells. We are currently working to determine the best methods and timing for delivering these cells into the hearts of mice that have had a heart attack. This research will identify those human embryonic stem cells that are best at repairing damaged heart muscle, thereby treating or avoiding heart failure.
  • Five million people in the U.S. suffer with heart failure, at a cost of $30 billion/year. Heart failure occurs when the heart is damaged and becomes unable to meet the demands placed on it. Unlike some tissues, heart muscle does not regenerate. Human embryonic stem cells grow and divide indefinitely while maintaining the potential to develop into many tissues of the body, including heart muscle. They provide an unprecedented opportunity to both study human heart muscle in culture in the laboratory, and advance cell-based therapy for damaged heart muscle. During this year of CIRM support, we have developed methods for identifying and isolating specific types of human embryonic stem cells, and stimulating them to become human heart muscle cells. We are currently working to determine the best methods and timing for delivering these cells into the hearts of mice that have had a heart attack. This research will identify those human embryonic stem cells that are best at repairing damaged heart muscle, thereby treating or avoiding heart failure.

Pages