Gladstone Institute

Stem cells for a broken heart? Maybe one day

The LA Times has a timely story in the week leading up to Valentine's day summarizing the role of stem cells in mending a broken heart. There's been a lot of talk - and a lot of money invested -- over the past few years pushing bone marrow stem cells as a tool for repairing damage after heart attack.

Stem cells model heart disease, test drugs

Nature has a story that features a promising use for stem cells, and also provided a creative outlet for whoever is writing headlines over there: "Cells snag top modelling job".

Top four list: why embryonic stem cells are critical

Yesterday CIRM grantee Bruce Conklin gave his top four reasons why embryonic stem cells are so valuable and why federal funding for the work needs to be able to continue. Conklin, who is Senior Investigator Gladstone Institute of Cardiovascular Disease and professor at UCSF, studies heart rhythm defects by creating iPS cells from people genetically predisposed to have those defects, then maturing those into heart cells in a dish.

Stem cell research like picking stocks? We don't think so.

A story by Nick Wade in Monday's New York Times rubbed some scientists the wrong way - and I must admit the piece was not too popular around CIRM headquarters.

Wade equated research funding with picking stocks. His idea is that a broad portfolio is bound to include some winners (he attributes this approach to the NIH and NSF) whereas attempts to only buy the big winners can produce a risky portfolio (an approach he attributes to CIRM).

Shinya Yamanaka receives Kyoto prize for reprogramming skin cells

Last week, while stem cell researchers from around the world congregated in San Francisco for their annual meeting, stem cell pioneer Shinya Yamanaka won the Kyoto Prize for Advanced Technology. This award in generally considered to be a precursor to a Nobel Prize.

A press release from UCSF said:

400th CIRM-funded paper clarifies link between gene variant and Alzheimer's

The 400th paper published with CIRM funding also marks the five-year anniversary of the first CIRM board meeting (the actual date was December 17, 2004). The paper, by researchers at the Gladstone Institute and the University of California, San Francisco, illustrates how far the field has come in the five years since the organization's inception, and in the three years since the organization has been funding research.

Molecules found that control the development of blood vessel cells

Researchers at the Gladstone Institute of Cardiovascular Disease have identified two molecules, called microRNAs, that push early heart cells to mature into the smooth muscle cells that line blood vessels. These same molecules also control when those smooth muscle cells divide to repair damage or in diseases such as cancer or atherosclerosis, which both involve unhealthy blood vessel growth. The two microRNAs, miR-145 and miR-143, are abundant in the primitive heart cells of prenatal mice, leading those cells to differentiate into various mature heart and aorta cells.

Support Cells Prevent Mature Heart from Repairing Damage

Researchers at the Gladstone Institute of Cardiovascular Disease may have discovered why developing heart muscles cells multiply in numbers while the adult counterparts do not. This finding could lead to therapies that roll back the clocks on heart muscle cells after injury such as a heart attack, allowing those cells to multiply and repair the damage. The researchers specifically looked at the role of cells called fibroblasts, which are packed in the heart amidst the muscle cells.

Genetic Factor Enables Immature Cells to Form Normal Heart Tissue

Researchers at the Gladstone Institute for Cardiovascular Disease found a genetic factor that helps in the earliest stages of heart development as the primitive tube loops around on itself and forms the separate chambers. This factor -- a short relative of DNA called microRNA -- has an identical counterpart in humans, leading the researchers to believe that their work in fish is likely to relate directly to human heart development.

Pages

Subscribe to RSS - Gladstone Institute

© 2013 California Institute for Regenerative Medicine