Grant Award Details
- Goal = address the safety bottleneck of teratoma and off target tissue formation risk from pluripotent stem cell (PSC) derived cell therapies via:
- Development of very sensitive assays, residual PSC purging, off target differentiation purging.
Progress Reports
View Report
View Report
View Report
View Report
Grant Application Details
- Ensuring the safety of cell therapy: a quality control pipeline for cell purification and validation
The clinical application of cell replacement therapy in the US is dependent on the FDA's approval, and the primary objective of the FDA is to protect patients from unsafe drugs and procedures. The FDA has a specific mandate for human gene and cell therapy and since the unexpected deaths in early trials of gene therapy trials the bar for safety in these areas is unusually high.
This is a summary of the key findings from the FDA's report on human embryonic stem cell therapy (April 2008): "From the perspective of toxicology, the proliferative potential of undifferentiated human embryonic and embryonic germ cells evokes the greatest level of concern. A characteristic of hESCs is their capacity to generate teratomas when transplanted into immunologically incompetent strains of mice. Undifferentiated hESCs are not considered as suitable for transplantation due to the risk of unregulated growth. Before clinical trials are begun in humans, the issue of unregulated growth potential and its relationship to stem cell differentiation must be evaluated".
In order to overcome the concerns about the safety of pluripotent stem cell therapy, we have designed a pipeline of quality control measures that can be applied to any cell type that is being considered for Investigational New Drug (IND) approval by the FDA. The technologies that we will develop under this award will allow rigorous selection and characterization of cells before they are tested as transplants. By reducing the possibility that stem cell therapies will be toxic or cause cancer in patients, we will remove the major barriers to advancement of these therapies to the clinic.
Californians are a large and diverse population that poses unique challenges for the future of medical care. Fortunately, California has a tradition of taking the lead in technology and medical breakthroughs and following through from the first idea to the final product. Almost 20,000 Californians await organ transplants, and more than a million suffer from progressive degenerative diseases and injuries such as Alzheimer disease, Parkinson’s disease, nerve-muscle disease such as amyotrophic lateral sclerosis (ALS) and muscular dystrophy, liver disease, diabetes, and spinal cord injury. The possibility of applying cell replacement therapy to these problems could drastically improve the outlook for treatment for the victims. A major goal for California's supporters of stem cell research is development of stem cell-based products that have medical use, and the mandate for the research community is to provide the best possible fundamental information to help guide clinical applications to make these cells as safe as is possible for cell therapy, by ensuring that they retain normal, noncancerous qualities.
California scientists have taken the first steps to clinical applications of pluripotent stem cells through their cutting edge research in developing new ways to derive these cells and to differentiate them into cell types that can be used to replace damaged tissues. We propose to take this research to the next step, to prepare the cells for clinical trials. We propose to develop a comprehensive pipeline of quality control technologies that will ensure the safety and purity of cells used first for preclinical testing and later for obtaining IND approval from the FDA for initiating human trials. These technologies can be used for any cell therapy, and will considerably reduce the barriers to development of safe, effective new treatments for incurable disease. This will have a positive effect on the health care of all Californians, reduce the cost of development of cell therapies, and create new opportunities for jobs and industry in the state.
Publications
- Tissue Eng Part A (2014) A global assessment of stem cell engineering. (PubMed: 24428577)
- J Biol Chem (2014) Genomic instability in pluripotent stem cells: implications for clinical applications. (PubMed: 24362040)
- Cell Res (2014) Protein post-translational modifications and regulation of pluripotency in human stem cells. (PubMed: 24217768)
- Stem Cell Reports (2014) Human neural precursor cells promote neurologic recovery in a viral model of multiple sclerosis. (PubMed: 24936469)
- Nat Commun (2014) Role of astroglia in Down's syndrome revealed by patient-derived human-induced pluripotent stem cells. (PubMed: 25034944)
- J Invest Dermatol (2013) Melanocytes derived from transgene-free human induced pluripotent stem cells. (PubMed: 23514962)
- Development (2013) BMP4-directed trophoblast differentiation of human embryonic stem cells is mediated through a DeltaNp63+ cytotrophoblast stem cell state. (PubMed: 24004950)
- J Cell Sci (2013) Matched miRNA and mRNA signatures from an hESC-based in vitro model of pancreatic differentiation reveal novel regulatory interactions. (PubMed: 23813959)
- Sci Rep (2013) Deriving dopaminergic neurons for clinical use. A practical approach. (PubMed: 23492920)
- Nature (2012) Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. (PubMed: 22278060)
- Cell Stem Cell (2012) Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. (PubMed: 22560082)
- Nat Biotechnol (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. (PubMed: 22820318)
- EMBO Rep (2012) Equally potent? Does cellular reprogramming justify the abandonment of human embryonic stem cells? (PubMed: 22986548)
- Nat Cell Biol (2012) The functions of microRNAs in pluripotency and reprogramming. (PubMed: 23131918)
- PLoS One (2012) Highly parallel genome-wide expression analysis of single mammalian cells. (PubMed: 22347404)
- Trends Mol Med (2012) Ethnically diverse pluripotent stem cells for drug development. (PubMed: 23142148)
- Stem Cells Dev (2011) Chromatin Insulator Elements Block Transgene Silencing in Engineered hESC Lines at a Defined Chromosome 13 Locus. (PubMed: 21699412)
- Methods Mol Biol (2011) FISH analysis of human pluripotent stem cells. (PubMed: 21822876)
- Cell Res (2011) Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. (PubMed: 21894191)
- PLoS One (2011) Evidence That Gene Activation and Silencing during Stem Cell Differentiation Requires a Transcriptionally Paused Intermediate State. (PubMed: 21886766)
- J Vis Exp (2011) Teratoma Generation in the Testis Capsule. (PubMed: 22158256)
- Cell Stem Cell (2011) A Call for Standardized Naming and Reporting of Human ESC and iPSC Lines. (PubMed: 21474098)
- Cell Stem Cell (2011) Targeted Gene Correction of Laminopathy-Associated LMNA Mutations in Patient-Specific iPSCs. (PubMed: 21596650)
- Nat Methods (2011) A bioinformatic assay for pluripotency in human cells. (PubMed: 21378979)
- PLoS One (2011) Equivalence of conventionally-derived and parthenote-derived human embryonic stem cells. (PubMed: 21249129)