Project Objective: Tool/Resources/Bottleneck
Development of Single Cell MRI Technology using Genetically-Encoded Iron-Based Reporters
Clinical application of cell transplantation therapy requires a means of non-invasively monitoring these cells in the patient. Several imaging modalities, including MRI, bioluminescence imaging, and positron emission tomography have been used to track stem cells in vivo. For MR imaging, cells are pre-loaded with molecules or particles that substantially alter the image brightness; the most […]
Editing of Parkinson’s disease mutation in patient-derived iPSCs by zinc-finger nucleases
The goal of this proposal is to establish a novel research tool to explore the molecular basis of Parkinson’s disease (PD) – a critical step toward the development of new therapy. To date, a small handful of specific genes and associated mutations have been causally linked to the development of PD. However, how these mutations […]
Development and preclinical testing of new devices for cell transplantation to the brain.
The surgical tools currently available to transplant cells to the human brain are crude and underdeveloped. In current clinical trials, a syringe and needle device has been used to inject living cells into the brain. Because cells do not spread through the brain tissue after implantation, multiple brain penetrations (more than ten separate needle insertions […]
Robust generation of induced pluripotent stem cells by a potent set of engineered factors
The recent discovery of iPSC (induced Pluripotent Stem Cell) technology marks a promising breakthrough in regenerative medicine. The beauty of the technology is its ability to convert adult mature cells into embryonic stem cells through the expression of a cocktail of essential factor genes. Thus, iPSCs bypass the ethical dilemma of using embryonic materials and […]
Preparation and Delivery of Clinically Relevant Numbers of Stem Cells Using 3D Hydrogels
A critical bottleneck to translate the promise of regenerative medicine to the clinic is the ability to efficiently harvest, expand, and deliver sufficient numbers of viable stem cells. While relatively large numbers of patient-specific, multipotent human adipocyte stem cells (hASC) can be harvested from adults, these cells must be re-delivered to the patient (either with […]
Developing a method for rapid identification of high-quality disease specific hIPSC lines
Elucidating how genetic variation contributes to disease susceptibility and drug response requires human Induced Pluripotent Stem Cell (hIPSC) lines from many human patients. Yet, current methods of hIPSC generation are labor-intensive and expensive. Thus, a cost-effective, non-labor intensive set of methods for hIPSC generation and characterization is essential to bring the translational potential of hIPSC […]
Use of hiPSCs to develop lead compounds for the treatment of genetic diseases
This study will use Ataxia-Telangiectasia (A-T), an early-onset inherited neurodegenerative disease of children, as a model to study the mechanisms leading to cerebellar neurodegeneration and to develop a drug that can slow or halt neurodegeneration. We will start with skin cells that were originally grown from biopsies of patients with A-T who specifically carry “nonsense” […]
Development of small molecule screens for autism using patient-derived iPS cells
Autism Spectrum Disorders (ASDs) are a heritable group of neuro-developmental disorders characterized by language impairments, difficulties in social integrations, and the presence of stereotyped and repetitive behaviors. There are no treatments for ASDs, and very few targets for drug development. Recent evidence suggests that some types of ASDs are caused by defects in calcium signaling […]
Magnetic Particle Imaging: A Novel Ultra-sensitive Imaging Scanner for Tracking Stem Cells In Vivo
We aim to develop, test and validate a new, sensitive and affordable scanner for tracking the location of injected cells in humans and animals. This new scanning method, called Magnetic Particle Imaging, will ultimately be used to track the location and viability of stem cells within the human body. It could solve one of the […]
Development of Synthetic Microenvironments for Stem Cell Growth and Differentiation
Currently, many chronic diseases and injuries do not have effective cures; millions of people suffer from disabilities while carrying on daily lives without appropriate medical assistance. Advances in human pluripotent stem cells (hPSCs) research have provided the potential hope for significant improvements of disease treatment and management. The success of stem cell-based therapy will have […]