Project Objective: Research Insights


MicroRNA Regulation of Human Embryonic Stem Cell Self-Renewal and Differentiation

A major hurdle for regenerative medicine is the safe transplantation of human embryonic stem (ES) cells or their derivatives into patients. While the unlimited growth potential of ES cells is a major asset for their potential in tissue replacement, it is also a major risk for tumorigenesis. Therefore, it is critical to determine what molecules […]

Role of Glycans in Human Embryonic Stem Cell Conversion to Neural Precursor Cells

Like a thick frosting on a cake, complex sugar chains decorate every surface of every cell. Try to approach a cell, as friend or foe, and the canopy of sugars is the first gate-keeper. Each cell makes and organizes these sugar chains, called glycans, on its surface. They are very complicated molecules, and different cells […]

Specification of Ventricular Myocyte and Pacemaker Lineages Utilizing Human Embryonic Stem Cells

Heart failure is a leading cause of mortality in California and the United States. Currently, there are no “cures” for heart failure.Other life threatening forms of heart disease include dysfunction of cardiac pacemaker cells, necessitating implantation of mechanical pacemakers. Although mechanical pacemakers can be efficacious, there are potential associated problems, including infection, limited battery half-life, […]

Regulation of Specific Chromosomal Boundary Elements by CTCF Protein Complexes in Human Embryonic Stem Cells

The genetic information contained in all human cells is arranged into distinct territories or “neighborhoods” with barriers or “fences” that protect the action in one neighborhood from spilling over into an adjacent region. In this way, one gene (A) can be working while its neighboring genes (B and C) are resting. As physiological conditions change […]

In vitro differentiation of hESCs into corticospinal motor neurons

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, fatal neurological disease that leads to the degeneration of motor neurons in the brain and in the spinal cord. There are currently 20,000 ALS patients in the United States, and 5,000 new patients are diagnosed every year. Unfortunately no cure has been found for ALS. The only […]

Discovering Potent Molecules with Human ESCs to Treat Heart Disease

This work is directly relevant to human embryonic stem cell (hESC) research because it brings new ideas about novel compounds to affect cardiomyogenesis. The work addresses an urgent need to develop new agents to treat cardiovascular disease. We will develop potent and selective drug-like molecules as cardiomyocyte differentiation agents. Heart disease is the leading cause […]

Programmed Cell Death Pathways Activated in Embryonic Stem Cells

The therapeutic potential of human embryonic stem cells is extraordinary. Without a doubt, regenerative medicines will save thousands of lives in the years to come. Before that day arrives, much needs to be learned from the cells themselves. The reasons that these cells hold so much promise are two-fold: (1) embryonic stem cells can renew […]

Programs of alternative splicing regulation by polypyrimidine tract binding protein

The therapeutic promise of stem cell biology lies in its potential for cell replacement therapies in diseases where an essential cell type of the patient malfunctions or degenerates. This is particularly evident in diseases of the nervous system where cells largely lose their ability to proliferate and thus regenerate after embryonic differentiation. Devastating neurodegenerative disorders, […]

RUNX1 in maintenance, expansion, and differentiation of therapeutic pluripotent stem cells

Recent technical advancements in human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) production have revolutionized their potential applications in regenerative medicine. However, a remaining big hurdle in this process is the need for efficient, effective, and stable generation of specific cell types from such stem cells for therapeutic usage. The ultimate goal […]

TCF-3: A Wnt Pathway Effector and Nanog Regulator in Pluripotent Stem Cell Self-Renewal

Despite the enormous potential for human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) for development of new treatments for human disease, there still remain important gaps in our knowledge about the molecular mechanisms regulating establishment and maintenance of the pluripotent state. Improved understanding of fundamental mechanisms regulating pluripotency could improve the […]