Project Objective: Research Insights

Examining the efficacy of GDF11 antibody as a rejuvenator of aged human muscle stem cell capacity and muscle repair .

Research Objective To examine the efficacy of blocking blood borne GDF11 activity to rejuvenate aged human muscle stem cell regenerative capacity. Impact This project will provide a proof-of-principle that GDF11 inhibition can boost aged human skeletal muscle repair, and facilitate its translational potential. Major Proposed Activities Determine GDF11 protein levels in human sera as a […]

Activation of patient-specific endogenous myocardial repair through the exosomes generated from the hypoxic iPSC-derived cardiomyocytes (iCMs).

Research Objective This proposal will provide direct evidence of clinical implementation of patient-specific iPSC products by validating the efficacy of autologous, cell-free exosome therapy. Impact Five-year survival of heart failure is a dismal 50% and is top diagnosis of hospital admission. Exosomes offer a feasible and effective cell-free therapy by activating endogenous myocardial repair. Major […]

Development of 3D Bioprinting Techniques using Human Embryonic Stem Cells Derived Cardiomyocytes for Cardiac Tissue Engineering

Heart, stroke and other cardiovascular diseases are responsible for ~17 million deaths per year globally and this number is predicted to reach 23.3 million by 2030. Cardiovascular diseases impose a staggering annual cost of $300 billion on the U.S. health care system. Heart transplantation is the ultimate solution to end-stage heart failure. However, a major […]

Injectable Macroporous Matrices to Enhance Stem Cell Engraftment and Survival

Despite the great promise stem cells hold for regenerative medicine, the efficacy of stem cell-based therapies is greatly limited by poor cell engraftment and survival. To overcome this major bottleneck, the goal of this proposal is to validate the efficacy of novel microribbon (µRB)-based scaffolds for cell delivery. These scaffolds combine the injectability and cell […]

Identification and isolation of transplantable human hematopoietic stem cells from pluripotent cell lines; two steps from primitive hematopoiesis to transplantable definitive cells, and non-toxic conditioning of hosts for hematopoeitic stem cell transp…

A goal of stem-cell therapy is to transplant into a patient “tissue-specific” stem cells, which can regenerate a particular type of healthy tissue (e.g., heart or blood cells). A major obstacle to this goal is obtaining tissue-specific stem cells that (1) are available in sufficient numbers; and (2) will not be rejected by the recipient. […]