Therapeutic/Technology: Personalized cell therapy


hPSC-derived enteric ganglioids for cell therapy in gastrointestinal motility disorders

Research Objective The proposed aims will enable the generation, purification and characterization of enteric neurons from diverse hiPSCs and assessment of their efficacy for cell therapy in GI motility disorders. Impact This proposal addresses a significant unmet clinical need for a cell therapy approach for gastrointestinal motility disorders such as Hirschsprung disease, achalasia and gastroparesis. […]

Injectable, autologous iPSC-based therapy for spinal cord injury

Research Objective We propose to develop and validate a therapy for spinal cord injuries in which human stem cell-derived neural cells is injected into the injured spinal cord using an injectable gel. Impact Our study will address the critical need for an SCI treatment that significantly improves the neurological recovery and hence quality of life […]

Identification and Generation of Long Term Repopulating Human Muscle Stem Cells from Human Pluripotent Stem Cells

Research Objective We will molecularly and functionally define muscle stem cells in human muscle in development, juvenile and adult and develop strategies to generate the most regenerative muscle stem cells from hPSCs. Impact There is no clinically relevant cell endowed with continuous repopulation ability from hPSCs. This work could provide a cell therapy for muscle […]

Microenvironment for hiPSC-derived pacemaking cardiomyocytes

Research Objective This proposal investigates the effects of the microenvironment on the development and maintenance of pacemaking function in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. Impact Pacemaking function of hiPSC-derived cardiomyocytes is lost over time. Sustainability of pacemaking function of these cells is critical for engineering an biopacemaker from the patient's own cells. Major […]

Autologous cell therapy for Parkinson’s disease using iPSC-derived DA neurons

Research Objective Autologous human dopaminergic neurons derived from patient-specific induced pluripotent stem cells Impact Parkinson's disease Major Proposed Activities Characterize differentiation from all 10 patient cell lines Characterize functionality of patient neurons matured in vitro Immunogenicity assessment Cryopreservation feasibility testing Investigate dose response in vivo Detect dopamine release in vivo Thousands of Californians suffer from […]

iPSC-Derived Smooth Muscle Progenitors for Treatment of Abdominal Aortic Aneurysm

Research Objective To assess the therapeutic effect of human induced pluripotent stem cell (iPSC)-derived smooth muscle progenitors (pSMCs) for treatment of abominal aortic aneurysm (AAA). Impact Currently, there are no pharmacologic therapies for AAA. If successful, delivery of autologous pSMCs to the site of AAA will halt or reverse the progression towards a rupture-prone aneurysm. […]

Development of treatments to improve healing of ischemic wounds

Research Objective We aim to develop an angiogenic proteoglycan mimic that will protect tissue from rapid degradation, and in conjunction with EPCs promote angiogenesis in order to accelerate ischemic wound healing. Impact As a treatment, LXW7-DS-SILY combined with a collagen scaffold and EPCs will accelerate healing of ischemic diabetic foot ulcers and reduce limb amputation […]

Autologous iPSC-based therapy for radiation induced bladder injury

Research Objective To explore if iPSC-based therapy can prevent bladder damage due to radiation therapy, thereby limiting the unintended consequences of treatments for prostate, gynecologic and colorectal cancers. Impact This therapy impacts cancer survivors by preventing the permanent debilitating urinary symptoms due to radiation therapy. Currently there are no therapies to prevent radiation bladder damage. […]

Development of Autologous Cell Replacement Therapy for Parkinson’s Disease: Path to Personalized Treatment

Translational Candidate autologous iPSC-derived dopaminergic progenitor cells Area of Impact Parkinson's Disease Mechanism of Action Autologous iPSC-derived dopaminergic progenitor cells represent a promising strategy to replace the nigrostriatal cells which are lost in Parkinson's Disease (PD). While approaches using fetal tissue / allogeneic stem cells show great promise, they are not sufficiently personalized to provide […]

BCMA/CS1 Bispecific CAR-T Cell Therapy to Prevent Antigen Escape in Multiple Myeloma

Translational Candidate A single-chain bispecific chimeric antigen receptor (CAR) targeting BCMA and CS1 will be used to in autologous T-cell therapy for multiple myeloma. Area of Impact Translational candidate will enable treatment of patients with heterogeneous or BCMA– multiple myeloma and prevent cancer relapse due to antigen loss. Mechanism of Action BCMA and CS1 are […]

1 2 3 4 5