Therapeutic/Technology: Cell Line Generation-Resource


Generation of human universal donor iPS cells

Translational Candidate Universal donor cell that is a genetically-engineered iPSC clone and is equipped with a safety switch. Area of Impact Regenerative medicine including replacement therapies affected by immune rejection by host immune cells. Mechanism of Action The universal donor cell mitigates immune rejection by host immune cells and is equipped with a suicide gene […]

Addressing the Cell Purity and Identity Bottleneck Through Generation and Expansion of Clonal Human Embryonic Progenitor Cell Lines

Human embryonic stem (hES) cells and induced pluripotent (iPS) cells, such as reprogrammed skin cells, offer the potential to revolutionize medicine because they can replicate indefinitely and become virtually any cell in the body. They therefore have the potential to provide a limitless source of cells to replace cells lost to injury (spinal cord, skin […]

Derivation of Parkinson’s Disease Coded-Stem Cells (PD-SCs)

Parkinson’s disease (PD) is currently the most common neurodegenerative movement disorder, severely debilitating approximately 1-2% of the US population. The disease is caused by a selective loss of dopamine-producing neurons located in a specific region of the brain. This loss leads to significant motor function impairment and age-dependent tremors. Unfortunately there is currently no cure […]

Generation of clinical grade human iPS cells

The therapeutic use of stem cells depends on the availability of pluripotent cells that are not limited by technical, ethical or immunological considerations. The goal of this proposal is to develop and bank safe and well-characterized patient-specific pluripotent stem cell lines that can be used to study and potentially ameliorate human diseases. Several groups, including […]

Derivation and comparative analysis of human pluripotent ESCs, iPSCs and SSCs: Convergence to an embryonic phenotype

This is an unprecedented time in stem cell biology and regenerative medicine. Today, we have cell lines and tools that did not exist just a few years ago. Indeed, human embryonic stem cells (hESCs) were derived from pre-implantation embryos just 10 years ago; more recently in the past year, cells with extensive similarities to ESCs […]

New Technology for the Derivation of Human Pluripotent Stem Cell Lines for Clinical Use

Since their discovery almost ten years ago, there has been steady progress towards the application of human embryonic stem (ES) cells in medicine. Now, the field is on the threshold of a new era. Recent results from several laboratories show that human skin cells can be converted to cells resembling ES cells through simple genetic […]

Derivation and analysis of pluripotent stem cell lines with inherited TGF-b mediated disorders from donated IVF embryos and reprogrammed adult skin fibroblasts

The field of regenerative medicine revolves around the capacity of a subset of cells, called stem cells, to become the mature tissues of the adult human body. By studying stem cells, we hope to develop methods and reagents for treating disease. For instance, we hope to develop methods for making stem cells become cardiovascular cells […]

Derivation of hESC Lines with Disease Lesions

The inner workings of the nervous system which regulate normal body movements, thought processes, feelings and senses are highly complex. How the nervous system relays and receives this variety of information is little understood, although significant inroads are being made to deduce underlying causes of many forms of neurological disorders. Many forms of retardation are […]

Derivation of New ICM-stage hESCs

Recent studies in the derivation of rodent pluripotent epiblast stem cells and their molecular characterizations have provided strong evidence that the conventional human embryonic stem cells may represent a distinct, later developmental stage, i.e. late epiblast stage, than the conventional murine embryonic stem cells, which is a “capture” of the ICM stage. Those two stages […]

Derivation of New ICM-stage hESCs

Recent studies in the derivation of rodent pluripotent epiblast stem cells and their molecular characterizations have provided strong evidence that the conventional human embryonic stem cells may represent a distinct, later developmental stage, i.e. late epiblast stage, than the conventional murine embryonic stem cells, which is a “capture” of the ICM stage. Those two stages […]