Stage of Program: Translational Tool/Bottleneck
Embryonic stem cell-based generation of rat models for assessing human cellular therapies
Heart failure, diabetes and neurodegenerative diseases are among the leading causes of death and disability worldwide. These diseases are characterized by the loss of specific cell types and can be treated and potentially cured with stem cell-based therapies. Before human stem cells can be used in clinical trials, however, their safety and efficacy need to […]
Injectable Hydrogels for the Delivery, Maturation, and Engraftment of Clinically Relevant Numbers of Human Induced Pluripotent Stem Cell-Derived Neural Progenitors to the Central Nervous System
One critical bottleneck in the translation of regenerative medicine into the clinic is the efficient delivery and engraftment of transplanted cells. While direct injection is the least invasive method for cell delivery, it commonly results in the survival of only 5-20% of cells. Studies suggest that delivery within a carrier gel may enhance cell viability, […]
Skin-derived precursor cells for the treatment of enteric neuromuscular dysfunction
The intestine performs the essential function of absorbing food and water into the body. Without a functional intestine, children and adults cannot eat normal meals, and these patients depend on intravenous nutrition to sustain life. Many of these patients do not have a neural system that coordinates the function of the intestine. These patients have […]
Skin-derived precursor cells for the treatment of enteric neuromuscular dysfunction
The intestine performs the essential function of absorbing food and water into the body. Without a functional intestine, children and adults cannot eat normal meals, and these patients depend on intravenous nutrition to sustain life. Many of these patients do not have a neural system that coordinates the function of the intestine. These patients have […]
Optimizing the differentiation and expansion of microglial progenitors from human pluripotent stem cells for the study and treatment of neurological disease.
Microglia are a type of immune cell within the brain that profoundly influence the development and progression of many neurological disorders. Microglia also inherently migrate toward areas of brain injury, making them excellent candidates for use in cell transplantation therapies. Despite the widely accepted importance of microglia in neurological disease, methods to produce microglia from […]
Multimodal platform combining optical and ultrasonic technologies for in vivo nondestructive evaluation of engineered vascular tissue constructs
Current vascular replacement materials are far from ideal, with all available biomaterials exhibiting significant clinical complications. The development of novel biocompatible decellularized vascular grafts holds great promise for functional restoration of vascular tissues suffering from trauma or disease. However, the need for destructive analysis at multiple in-vitro and in-vivo time points creates a costly critical […]
Site-specific gene editing in hematopoietic stem cells as an anti-HIV therapy
The overall goal of this proposal is to develop new methods and technologies to improve our ability to engineer hematopoietic stem cells. These are the adult stem cells found in the bone marrow that give rise to all of the components of the blood and immune systems. Being able to engineer these cells provides potential […]
Development of a scalable, practical, and transferable GMP-compliant suspension culture-based differentiation process for cardiomyocyte production from human embryonic stem cells.
As ongoing CIRM-funded development of regenerative medicine (RM) progresses, the demand for increasing numbers of pluripotent stem cells and their differentiated derivatives has also increased. We have established a scalable suspension culture system for the production of large quantities of hESC for banking and to seed production of a number of regenerative medicine cell types, […]
Engineered Biomaterials for Scalable Manufacturing and High Viability Implantation of hPSC-Derived Cells to Treat Neurodegenerative Disease
Cell replacement therapies (CRTs) have considerable promise for addressing unmet medical needs, including incurable neurodegerative diseases. However, several bottlenecks hinder CRTs, especially the needs for improved cell manufacturing processes and enhanced cell survival and integration after implantation. Engineering synthetic biomaterials that present biological signals to support cell expansion, differentiation, survival, and/or integration may help overcome […]
Macaca mulatta as advanced model for predictive preclinical testing of engineered cardiac autografts and allografts
Heart disease is the number one cause of death in the US. Heart muscle injured during a heart attack does not regenerate, and the resulting damage leads to heart failure, which inflicts almost 6 million people in the US alone. Recently, several studies have shown that direct injection of stem cell-derived heart cells may offer […]