Use of hiPSCs to develop lead compounds for the treatment of genetic diseases

Return to Grants

Grant Award Details

Grant Number:
Human Stem Cell Use:
Cell Line Generation:
Award Value:

Progress Reports

Reporting Period:
Year 1
Reporting Period:
Year 2
Reporting Period:
Year 3

Grant Application Details

Application Title:

Use of hiPSCs to develop lead compounds for the treatment of genetic diseases

Public Abstract:
This study will use Ataxia-Telangiectasia (A-T), an early-onset inherited neurodegenerative disease of children, as a model to study the mechanisms leading to cerebellar neurodegeneration and to develop a drug that can slow or halt neurodegeneration. We will start with skin cells that were originally grown from biopsies of patients with A-T who specifically carry “nonsense” type of mutations in the ATM gene. We will convert these skin cells to stem cells capable of forming neural cells that are lacking in the brain (cerebellum) of A-T patients; presumably these neural cells need ATM protein to develop normally. We will then test the effects of our most promising new “readthrough compounds” (RTCs) on the newly-developed neural cells. Our lab has been developing the drugs over the past six years. At present, there is no other disease model (animal or in a test tube) for evaluating the effects of RTCs on the nervous system and its development. Nor is there any effective treatment for the children with A-T or other progressively-deteriorating ataxias. Success in this project would open up at least three new areas for understanding and treating neurodegenerative diseases: 1) the laboratory availability of human neural cells with specific disease-causing mutations; 2) a new approach to learning how the human brain develops and 3) a new class of drugs (RTCs) that correct nonsense mutations, even in the brain, and may correct neurodegeneration.
Statement of Benefit to California:
This project seeks to merge the expertise of two major research cultures: one with long-standing experience in developing a treatment for a progressive childhood-onset disease called Ataxia-telangiectasia and another with recent success in converting skin cells into cells of the nervous system. California citizens will benefit by finding new ways to treat neurodegenerative diseases, like A-T, Parkinson and Alzheimer, and expanding the many possible applications of stem cell technology to medicine. More specifically, we will construct a new “disease in a dish” model for neurodegeneration, and this will enable our scientists to test the positive and negative effects of a new class of drugs for correcting inherited diseases/mutations directly on brain cells. These advances will drastically decrease drug development costs and will stimulate new biotech opportunities and increase tax revenues for California, while also training the next generation of young scientists to deliver these new medical products to physicians and patients within the next five years.