The Immunological Niche: Effect of immunosuppressant drugs on stem cell proliferation, gene expression, and differentiation in a model of spinal cord injury.

Funding Type: 
SEED Grant
Grant Number: 
Award Value: 
Disease Focus: 
Spinal Cord Injury
Neurological Disorders
Stem Cell Use: 
Adult Stem Cell
Embryonic Stem Cell
Public Abstract: 
Our understanding of the effect of immunosuppressive agents on stem cell proliferation and differentiation in the central nervous system is limited. Indeed, even the necessity for long-term immunosuppression to promote the survival of stem cells grafted into the “immunoprivileged” central nervous system (CNS) is unknown. Grafting multipotent stem cells into the injured CNS often results in a failure of the cells to survive. If the cells survive, often they differentiate into astrocytes, a cell-type not considered beneficial. We recently grafted human stem cells (hCNS-SC) into spinal injured mice and observed behavioral improvements coupled with differentiation of these human cells into neurons and oligodendrocytes. We also observed mouse-human synapse formation and remyelination. The mice we used lacked a functional immune system, enabling us to grafting human cells into the mice without the use of immunosuppressants. When these same cells were grafted into spinal injured rats with a normal immune system, we had to immunosuppress the animals. Exposure of these human stem cells to immunosuppressive drugs resulted poor cell survival. The cells that did survive predominantly differentiated into astrocytes. Did the immunosuppressive drugs we used alter the ability of the human stem cells to differentiate into useful cells? All cell-based therapeutic approaches are dependent upon either immunosuppression in an otherwise normal animal or testing for proof of principal in an immunodeficient animal model. This has quite significant implications for animal experiments or human trials, where continuous immunosuppression is required to obtain successful graft survival. No one knows if there are direct effects of immunosuppressant drugs on neural stem cells. Stem cells may also respond differently to immunosuppression depending on their “ontogenetic” age (embryonic vs. fetal vs. adult). There is a common perception that “young” ES cells will have greater potential than “older” stem cells. Stem cells isolated at different ontogenetic stages might respond differently to immunosuppression. We predict that the immunosuppressive drugs will exert direct effects on stem cell proliferation, gene expression, and fate determination, both in cell culture and when grafted into animals with spinal cord injury. We will also test if “ontogenetic” age alters the responsiveness of stem cells.
Statement of Benefit to California: 
The California Institute for Regenerative Medicine (CIRM) recognizes that the field of stem cell biology is in its infancy. CIRM has requested a broad range of research to fill in key gaps in our understanding of basic stem cell biology and the possible use of these cells as therapeutics. Grants are to be judged on impact (extent the proposed research addresses an important problem; significantly moves the field forward scientifically; moves the research closer to therapy; and changes the thinking or experimental practice in the field), quality (is proposed research planned carefully to give a meaningful result; are possible difficulties are acknowledge; does the timetable allows for achieving significant research) and innovation (to what extent the research approach is original, breaks new ground, and brings novel ideas to bear on an important problem). We believe that the projects proposed here target several of the areas CIRM cites as beneficial to the State of California. This proposal addresses the critical area of immunosuppression and stem cell survival in animal transplantation models. Future therapies using human stem cells will have to surmount the possible rejection by the host of cells derived from another source. If traditional immunosuppressive drugs are to be used, we will need to understand whether these drugs have a direct effect on stem cell proliferation and fate determination (or differentiation). Furthermore, these projects will allow for a direct comparison of stem cells from different ontogenetic stages and the ability to improve functional outcome after spinal cord injury. Thus we may gain insight into whether embryonic derived stem cells are more useful than adult derived stem cells as a therapeutic tool.
Progress Report: 
We have shown that fetal human central nervous system derived stem cells (HuCNS-SC) transplanted into a mouse model of spinal cord injury (SCI) improve behavioral recovery. Transplanted human cells differentiated into myelinating oligodendrocytes and synapse forming neurons. These data suggest that efficacy is dependent upon successful cell engraftment and appropriate cell fate. The strain of mice (NOD-scid mice) are immunodeficient, which allows transplanted human cell populations to engraft and promote behavioral recovery in the absence of confounds due to a rejection response and allows us to avoid using immunosuppressant drugs. Clinically, however, it is clear that transplantation of therapeutic human cell populations will require administration of immunosuppressants (IS) such as CsA, FK506, or Rapamycin. These immunosuppressants work by altering signaling pathways which are also present within stem cells. Hence, in addition to promoting engraftment, IS have the potential to affect stem cell proliferation and/or differentiation. In Aim 1A, we tested this hypothesis in a cell culture model and found that HuCNS-SC fate and proliferation were altered by exposure to different IS. CsA and FK506 decreased the number of astrocytes in culture compared to control conditions, while Rapamyin increased the number of astrocytes. All three IS increased the number of ß-tubulin III positive neuron-like cells. In Aim 1B, we tested whether cells of the inflammatory system (neutrophils and macrophages) could also directly influence stem cell proliferation and fate. To test this possibility, we exposed either fetal or embryonic neural stem cells to cell culture media from co-cultures of neutrophils or macrophages. We found that neutrophil-mediated release of inflammatory proteins promotes astrocyte differentiation of fetal derived neural stem cells but not embryonic derived neural stem cells. One way inflammatory cells might be working is via oxidative stress (e.g. hydrogen peroxide). Interestingly, excess hydrogen peroxide promoted more extensive cell death of embryonic derived versus fetal fetal derived neural stem cells, suggesting an intrinsic difference in the vulnerably of these two cell populations to oxidative stress. Conditioned media from neutrophils was found to reduce proliferation in fetal neural stem cells but not embryonic derived neural stem cells. In addition, we found neutrophil conditioned media promotes human fetal NSC astrocytic fate and migration towards sites of injury epicenter in an animal model of spinal cord injury; followup cell culture experiments enabled us to determine that neutrophil synthesized complement proteins were having a direct effect on stem cell fate and migration, resulting in a patent filing. These data demonstrate that fetal NSCs and ES-NSCs are very different by nature and nurture. In Aim 2, we evaluated the hypothesis that IS could alter stem cell proliferation and/or fate in vivo, independent of rejection from the recipient’s immune system. HuCNS-SC were transplanted into NOD-scid mice, which have no immune system and hence cannot mount an immune response to the foreign cells. These animals received different immunosuppressants (CsA, FK506, Rapamycin, or vehicle) daily after transplantation until sacrifice 13 weeks later to determine if the total number of surviving human cells, or the end cell fate of the transplanted cells would be altered due to exposure to IS drugs compared to the vehicle control group. Behavioral recovery was assessed via open-field walking assessment, horizontal ladder beam testing, and video based “CatWalk” gait analysis. IS administration did not affect behavioral recovery by any of these measures compared to HuCNS-SC transplanted animals that received vehicle as an IS. Spinal cords were dissected, sectioned, and immunostained using human-specific markers in conjunction with cell lineage/fate and proliferation markers. Cell engraftment, proliferation, and fate were quantified using unbiased methods. The average number of engrafted human cells in uninjured animals was 319,700 vs 214,900 in vehicle treated injured controls. Human cell engraftment in any IS group was not significantly different than vehicle injured controls. Interestingly, 67% of human cells differentiated into Olig2+ oligodendrocyte-like cells in the uninjured controls, while 45% were Olig2 positive in vehicle treated injured controls. IS treatment did not alter Olig2 cell numbers in injured animals. 9% of human cells differentiated into GFAP positive astrocyte-like cells in the uninjured controls, compared with 9% in vehicle treated injured controls. IS treatment did not alter GFAP cell numbers in injured animals. Quantification of proliferation and other lineage markers is ongoing. The important finding thus far is that when administered to whole animals with a human stem cell transplant, a range of immunosuppressant drugs does not appear to significantly alter stem cell fate.