A CIRM Disease Team for the Treatment and Cure of Diabetes
This proposal is for the establishment of a group of faculty, staff and industrial partners to develop a proposal for a Diabetes Disease Team. Diabetes is one of the most…
Engineered matrices for control of lineage commitment in human pancreatic stem cells
Patients with end-stage type 1 diabetes (T1D) can be effectively managed by allogeneic islet transplantation. However, a severe cadaveric organ shortage greatly limits use of this promising procedure. Stem cells…
Generation of a functional thymus to induce immune tolerance to stem cell derivatives
Stem cell research offers the promise of replacing missing or damaged tissues in the treatment of disease. Stem-cell-derived transplants still face problems with rejection as in traditional organ transplants. Several…
Preclinical and clinical testing of a stem cell-based combination product for insulin-dependent diabetes
Diabetes exacts a tremendous toll on patients, their families, and society. Autoimmune Type 1 diabetes, often called juvenile-onset diabetes, is caused by a person’s own immune system mistakenly destroying their…
Deciphering transcriptional control of pancreatic beta-cell maturation in vitro
The loss of pancreatic beta-cells in type 1 diabetes results in absence of insulin secreted by the pancreas, and consequently elevated blood sugar which leads to various long-term complications. Diabetic…
Biological relevance of microRNAs in hESC differentiation to endocrine pancreas
There remains an urgent and critical need for a cell-based cure of diabetes, one of the most costly diseases in California. Islet transplantation with persistent immune suppression has shown promise…
Bone Marrow Mesenchymal Stem Cells to Heal Chronic Diabetic Wounds
Diabetic foot ulcers (DFU), chronic, non-healing wounds on the feet of diabetic patients, present a serious challenge to global health. These ulcers affect between 15-25% of the 18-21 million Americans…
Methods for detection and elimination of residual human embryonic stem cells in a differentiated cell product
Human embryonic stem cells (hESC), and other related pluripotent stem cells, have great potential as starting material for the manufacture of curative cell therapies. This is primarily for two reasons.…
Developing induced pluripotent stem cells into human therapeutics and disease models
Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and differentiate into all the cell types in the human body, and thus hold great promise for cell replacement therapy. However,…