Therapeutic/Technology: Specific Cell Type Derivation


Utilizing Age-Specific Adipocyte Progenitor Cells for Cell Therapy in Older Patients

Research Objective A new type of APC serves older patients as 1) better MSC in immunomodulation (reducing inflammation) for autologous transplantation; 2) better source of somatic cells for generating heathier hiPSCs. Impact Bottlenecks: 1) Older patients suffer from sarcopenic obesity, which has no safe and effective treatment. 2) Cell therapy in older patients is often […]

Identifying roadblocks to neural stem cell transplantation into human tissues.

Research Objective We will generate a comprehensive map of human neural stem cell differentiation profiles that will serve as a reference for enhancing neural stem cell-based therapies. Impact Our project will develop improved protocols for human neural stem cells differentiation, enhancing the fidelity, safety and robustness of future cell therapies. Major Proposed Activities Establish quantitative […]

Engineering pluripotent stem cells for universally available, off-the-shelf T cell therapies

Research Objective Our goal is to develop new gene editing methods for producing universal, off-the-shelf, therapeutic T cells from induced pluripotent stem cells (iPSC) that can be applied to a range of diseases. Impact We will develop new gene editing approaches to overcome the block to T cell development from iPSC that occurs when key […]

Understanding Chemotherapy-Induced Peripheral Neuropathy Mechanisms using CRISPRi and Chemical Screens in Human iPSC-Derived Sensory Neurons

Research Objective The research objectives are to identify causal genes for chemotherapy-induced mitochondrial toxicity and neurodegeneration in sensory neurons and drugs that target this toxicity. Impact These studies will open the possibility for genetic or drug targeting to prevent and treat drug-induced peripheral neuropathies and possibly neuropathies caused by disease or inherited. Major Proposed Activities […]

Stem cell-based rapid identification of SARS-CoV-2 T cell epitopes and T cell receptors for therapeutic use

Research Objective We will identify SAR-CoV-2 T cell epitopes for vaccine development and specific TCRs for adoptive T cell therapy using a stem cell-based platform to generate specialized dendritic cells in vitro. Impact New methods to rapidly identify T cell epitopes would greatly accelerate development of vaccines and TCR-based therapeutics, and in the setting of […]

Enabling non-genetic activity-driven maturation of iPSC-derived neurons

Research Objective We will empower stem cell biologists to generate iPSC-derived neurons faster and with enhanced maturation by enabling optical cell stimulation and triggering activity-dependent maturation processes Impact Our project will address such critical bottlenecks as insufficient maturity of iPSC-derived neurons that limits their utility in age-related neurological disorders that manifest later in life. Major […]

A novel hybrid CRISPR tool for gene network perturbation and hiPSC engineering

Research Objective A CRISPR-based tool for simultaneous up- and downregulation of many (~5-20) genes, and a computational tool using scRNA-seq data to predict which genes to perturb for efficacious cell-type conversion. Impact A critical bottleneck to the creation of specific cell types from stem cells (and related therapies) is our current inability to make cells […]

Platform Technology for Pluripotent Stem Cell-Derived T cell Immunotherapy

Research Objective We will combine a novel method to produce T cells from stem cells with gene editing tools, to create pluripotent stem cells that can serve as a universal source of T cells for cancer immunotherapy. Impact We will address a major bottleneck for T cell immunotherapy: the complexity and therefore limited access to […]

Generation of human airway stem cells by direct transcriptional reprogramming for disease modeling and regeneration

Research Objective We will generate human airway stem cells by direct transcriptional reprogramming of fibroblasts. We will use these induced airway stem cells to model motile cilia disease in a dish. Impact Generating airway stem cells through reprogramming will create a scalable and editable cell line from which we can derive airway epithelium, thus enabling […]

Generation of expandable, self-renewing muscle stem cells for Duchenne Muscular Dystrophy

Research Objective The goal of this proposal is to define protocols to generate expandable, self-renewing human muscle stem cells (MuSC) from hiPS cells for Duchenne Muscular Dystrophy disease modeling and therapeutics. Impact The integration of STAT3i with current approaches to derive myogenic cells from hiPS cells would enable the generation of self-renewing MuSC that are […]