We have been developing new tools for the genetic modification of embryonic stem cells (ESCs). Part of the potential for use of ESCs in treatments or as models of disease depends on the ability to change genes within ESCs. We have developed a novel system, which we call the Floxin system, that allows for the more efficient modification of genes within mouse ESCs than has been historically feasible. We have used this system to insert mutations that cause human diseases into mouse ESCs. Introducing human mutations into ESCs has allowed us to study the function of these mutations in the context of stem cell function and gain insight into how these mutations cause human disease.
We are interested in extending our findings by modeling an important class of neurological diseases that predominantly affect spinal motor neurons, the neurons that control muscle movement. The most well known of these motor neuronopathies is Amyotrophic Lateral Sclerosis (ALS), commonly referred to as Lou Gehrig’s disease, but there are a number of other motor neuronopathies including Hereditary Motor Neuronopathy and Spinal Muscular Atrophy.
Human genetic studies have identified many mutations that cause these diseases, but it is not understood why these mutations kill motor neurons. This lack of understanding about the root causes of motor neuron diseases currently hinders the development of effective treatments. We are currently using the Floxin system to introduce human motor neuronopathy-associated mutations into mouse ESCs. We have introduced mutations into two disease-associated genes, and are deriving motor neurons from these modified ESCs to study how the mutations kill these cells.
The development of cell-based models of human diseases is likely to have additional benefits as well. For example, diseased motor neurons grown in cell culture dishes can be quickly and efficiently screened with potential drugs to discover agents that slow, halt or reverse the cellular damage. It is our hope that these experiments will both deepen our understanding of important neurodegenerative disorders, and lead to new directions for the development of effective therapies.
We have made the resource of Floxin vectors and the greater than 24,000 characterized Floxin compatible ESC lines available to the research community. Application of the Floxin technology to this resource will allow genetic modification of more than 4,500 genes in ESCs. Furthermore, we are adapting the Floxin technology for use in human ESCs which may allow for tractable genetic engineering in these cells. We anticipate that this technology will allow many researchers to create cellular models of human disease and other genetic modifications that will facilitate the use of stem cells in fighting diverse diseases.
Reporting Period:
Year 2
We have developed new tools for the genetic modification of embryonic stem cells (ESCs) and are using these tools to model human diseases. Part of the potential for use of ESCs in treatments or as models of disease depends on the ability to change genes within ESCs. We have developed a novel system, which we call the Floxin system, that allows for the more efficient modification of genes within mouse ESCs than has been historically feasible. We use this system to insert mutations that cause human diseases into mouse ESCs. Introducing human mutations into ESCs has allowed us to study the function of these mutations in the context of stem cell function and gain insight into how these mutations cause human disease. To date, we have investigated an inherited congenital malformation syndrome called Orofaciodigital syndrome and elucidated that the underlying birth defects are caused by misregulation of cilia and centrioles, structures within all cells. We have also used our system to investigate how genes are regulated by Polycomb-like proteins and to reveal how cilia control ESC differentiation into motor neurons, findings that shed light on the control of motor neuron production from ESCs.
We are extending our findings by modeling an important class of neurological diseases that predominantly affect spinal motor neurons, the neurons that control muscle movement. The most well known of these motor neuronopathies is Amyotrophic Lateral Sclerosis (ALS), commonly referred to as Lou Gehrig’s disease, but there are a number of other motor neuronopathies including Hereditary Motor Neuronopathy and Spinal Muscular Atrophy. Human genetic studies have identified many mutations that cause these diseases, but it is not understood why these mutations kill motor neurons. This lack of understanding about the root causes of motor neuron diseases currently hinders the development of effective treatments.
We have used the Floxin system to introduce human motor neuronopathy-associated mutations into mouse ESCs. We have introduced mutations into two disease-associated genes, and have derived motor neurons from these modified ESCs to study how the mutations kill these cells. The development of cell-based models of human diseases is likely to have additional benefits as well. For example, diseased motor neurons grown in cell culture dishes can be quickly and efficiently screened with potential drugs to discover agents that slow, halt or reverse the cellular damage. It is our hope that these experiments will both deepen our understanding of important neurodegenerative disorders, and lead to new directions for the development of effective therapies.
We have made the resource of Floxin vectors and the greater than 24,000 characterized Floxin compatible ESC lines available to the research community. Application of the Floxin technology to this resource will allow genetic modification of more than 4,500 genes in ESCs. Furthermore, we are hoping to adapt the Floxin technology for use in human ESCs which may allow for tractable genetic engineering in these cells. We anticipate that this technology will allow many researchers to create cellular models of human disease and other genetic modifications that will facilitate the use of stem cells in fighting diverse diseases.
Reporting Period:
Year 3
An important class of neurological diseases predominantly affects spinal motor neurons, the neurons that control muscle movement. The most well known of these motor neuronopathies is Amyotrophic Lateral Sclerosis (ALS), commonly referred to as Lou Gehrig’s disease for the famous Yankee first baseman who died of the disease. The first symptoms of ALS are usually increasing difficulty walking or speaking clearly. People with ALS progressively lose their ability to initate and control movements, and may become totally paralyzed during the late stages of the disease. There are no cures or effective treatments for these diseases. Riluzole (Rilutek), the only FDA approved medication for ALS, only modestly slows disease progression. Consequently, ALS is usually fatal within one to five years from onset, with half dying within eighteen months.
Although genetic studies have identified many mutations that cause these diseases, it is not understood why these mutations kill motor neurons. This lack of understanding about the root causes of motor neuron diseases currently hinders the development of effective treatments. We seek to study motor neurons carrying these mutations in cell culture dishes to understand how these diseases sicken and kill these cells.
To generate these motor neurons, we are using embryonic stem cells. Embryonic stem cells can become any cell in our body, including motor neurons. We have developed a new technology that allows us to quickly replace healthy genes with mutant genes in mouse embryonic stem cells. We are using this technology to insert both normal and disease-associated versions of genes into embryonic stem cells. Study of the healthy and mutant mutant motor neurons derived from these embryonic stem cells will shed light on the ways in which the mutations cause harm.
We have been using the mutant embryonic stem cells to assay leading hypotheses about how diseases like ALS begin. In addition, we are using the embryonic stem cells to create new animal models of ALS. Finally, we are adapting our technology to be able to create more faithful models of disease using embryonic stem cells in order to expedite understanding into the origins of these diseases.
Reporting Period:
Year 4
Neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and Amyotrophic Lateral Sclerosis (ALS, also known as Lou Gehrig’s disease), affect an increasing proportion of our population as the median age increases. There are no cures for any of these disorders. One reason for the absence of cures has been the absence of good models to understand how neurodegeneration happens.
Genetic studies have identified many of the genes involved in neurodegeneration. To understand how these mutations lead to motor neuron degeneration in ALS, we have creased embryonic stem cells (ESCs) that contain the human ALS-associated mutations. We have also created mice that express these human ALS-associated mutations. We are studying motor neurons derived from the ESCs and the mutant mice to understand how motor neurons die in ALS. We are defining the proteins and RNAs that interact with normal and disease-associated proteins, and following the mutant neurons over time to examine how they die. Currently, we are testing the hypothesis that disease mutations alter the gene product’s normal interactions, leading to a tonic increase in cell death rate. After several decades of life, the loss of neurons surpasses compensatory mechanisms, leading to the emergence of symptoms.
Reporting Period:
Year 5
Neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and Amyotrophic Lateral Sclerosis (ALS, also known as Lou Gehrig’s disease), affect an increasing proportion of our population as the median age increases. There are no cures for any of these disorders. One reason for the absence of cures has been the absence of good models to understand how neurodegeneration happens.
Genetic studies have identified many of the genes involved in neurodegeneration. To understand how these mutations lead to motor neuron degeneration in ALS, we have creased embryonic stem cells (ESCs) that contain the human ALS-associated mutations. We have also created mice that express these human ALS-associated mutations. We studied motor neurons derived from the ESCs and the mutant mice and found that motor neurons with ALS-associated mutations die at increased rates. We identified proteins that interact with normal and disease-associated proteins. We identified that mutant proteins showed different interactions than normal proteins. After several decades of life, the loss of neurons surpasses compensatory mechanisms, leading to the emergence of symptoms.
Grant Application Details
Application Title:
High throughput modeling of human neurodegenerative diseases in embryonic stem cells
Public Abstract:
An important class of neurological diseases predominantly affects spinal motor neurons, the neurons that control muscle movement. The most well known of these motor neuronopathies is Amyotrophic Lateral Sclerosis (ALS), commonly referred to as Lou Gehrig’s disease for the famous Yankee first baseman who died of the disease. The first symptoms of ALS are usually increasing difficulty walking or speaking clearly. People with ALS progressively lose their ability to initate and control movements, and may become totally paralyzed during the late stages of the disease. There are no cures or effective treatments for these diseases. Riluzole (Rilutek), the only FDA approved medication for ALS, only modestly slows disease progression. Consequently, ALS is usually fatal within one to five years from onset, with half dying within eighteen months. Although genetic studies have identified many mutations that cause these diseases, it is not understood why these mutations kill motor neurons. This lack of understanding about the root causes of motor neuron diseases currently hinders the development of effective treatments. We seek to study motor neurons carrying these mutations in cell culture dishes to understand how these diseases sicken and kill these cells. To generate these motor neurons, we will use embryonic stem cells. Embryonic stem cells can become any cell in our body, including motor neurons. We have developed a new technology that allows us to quickly replace healthy genes with mutant genes in mouse embryonic stem cells. We will use this technology to insert both normal and disease-associated versions of genes into embryonic stem cells. Study of the healthy and mutant mutant motor neurons derived from these embryonic stem cells will shed light on the ways in which the mutations cause harm. The development of cell based models of human diseases is likely to have additional benefits as well. For example, diseased motor neurons grown in cell culture dishes can be quickly and efficiently screened with potential drugs to discover agents that slow, halt or reverse the cellular damage. It is our hope that these experiments will both deepen our understanding of important neurodegenerative disorders, and lead to new directions for the development of effective therapies.
Statement of Benefit to California:
Over 6,000 Americans are diagnosed each year with motor neuronopathies, about the same as are diagnosed with multiple sclerosis. One form of this illness, ALS, is responsible for about one in every 800 deaths, and cause many lengthy and costly hospital admissions. We propose using stem cells to model these diseases so that we can gain a deeper understanding of their root causes. It is our expectation that this deeper understanding will lead to new and better approaches to the treatment of these disorders. In addition, our technology for developing embryonic stem cell-based models of human diseases is likely to have applications in the biotechnology sector. Although our technology is most applicable for modeling simple dominant genetic diseases, it can be adapted to model recessive and complex disorders. Beyond increasing our understanding of human diseases, these cellular models represent useful screening tools for testing novel pharmacological treatments. Identification and development of these new therapies may support new companies or new products for existing companies. We hope that using stem cells to model neurodegenerative disorders will lead to progress in the fight against these diseases, as well as provide the tools and examples for those in academia and industry who hope to create stem cell models of other clinically important disorders.