Human Stem Cell Use: iPS Cell


Safe, efficient creation of human induced pluripotent stem cells without the use of retroviruses

Embryonic stem cells open up exciting new prospects for medicine, because they can differentiate into any tissue in the body. Therefore, they have the potential to be used to repair faulty tissues in diseases like diabetes, heart disease, and neural disorders. Furthermore, stem cells can be corrected by gene therapy and transplanted, in order to […]

Somatic cell age and memory in the generation of iPS cells

Pluripotent stem cells can give rise to any cell type of the body and hold enormous promise for regenerative medicine. Pluripotent stem cells, such as embryonic stem (ES) cells, are derived from very young human embryos. It is of great interest to derive pluripotent stem cells from adult cells. In this way, one could potentially […]

Induction of pluripotent stem cells by small RNA-guided transcriptional activation

Embryonic stem cells have great potential in therapeutic use to replace diseased or damaged tissues because they have the unique capability of giving rise to any cell type of the body while perpetuating their own identity, even after repeated cell divisions. Recent advances in this area have resulted in a new way to generate stem […]

Establishment of Frontotemporal Dementia Patient-Specific Induced Pluripotent Stem (iPS) Cell Lines with Defined Genetic Mutations

We propose to generate induced pluripotent stem (iPS) cells from skin cells derived from human subjects with frontotemporal dementia (FTD). FTD accounts for 15–20% of all dementia cases and, with newly identified genetic causes, is now recognized as the most common dementia in patients under 65 years of age. FTD patients suffer progressive neurodegeneration in […]

Development of Induced Pluripotent Stem Cells for Modeling Human Disease

Human embryonic stem cells (hESC) hold great promise in regenerative medicine and cell replacement therapies because of their unique ability to self-renew and their developmental potential to form all cell lineages in the body. Traditional techniques for generating hESC rely on surplus IVF embryos and are incompatible with the generation of genetically diverse, patient or […]

New Cell Lines for Huntington’s Disease

Huntington’s disease (HD) is a devastating neurodegenerative disease with a 1/10,000 disease risk that always leads to death. These numbers do not fully reflect the large societal and familial cost of HD, which requires extensive caregiving and has a 50% chance of passing the mutation to the next generation. Current treatments treat some symptoms but […]

Protein transduction of transcription factors: a non-genetic approach to generate new pluripotent cell lines from human skin.

More than 100,000 patients await for organ transplants nationwide this year. The ground-breaking discovery of new pluripotent human stem cell lines (iPS) derived from skin fibroblasts using a core of 3-5 transcription factors opens the door to patient-derived pluripotent stem cells and new approaches to organ and tissue replacement. Patient-derived stem cells could have an […]

Epigenetic gene regulation during the differentiation of human embryonic stem cells: Impact on neural repair

Human embryonic stem cells (hESCs) have the potential to become all sorts of cells in human body including nerve cells. Moreover, hESCs can be expanded in culture plates into a large quantity, thus serving as an ideal source for cell transplantation in clinical use. However, the existing hESC lines are not fully characterized in terms […]

Using Human Embryonic Stem Cells to Understand and to Develop New Therapies for Alzheimer’s Disease

Alzheimer’s Disease (AD) is a progressive incurable disease that robs people of their memory and ability to think and reason. It is emotionally, and sometimes financially devastating to families that must cope when a parent or spouse develops AD. Unfortunately, however, we currently lack an understanding of Alzheimer’s Disease (AD) that is sufficient to drive […]

Modeling Human Embryonic Development with Human Embryonic Stem Cells

Stem cells have entered the public consciousness as “cells that can do anything” and have been hailed as a panacea in the fight against disease, aging and cancer. Unfortunately, we have only scratched the surface in understanding these cells. Some of the things we think we know are that: embryonic stem cells hold great promise […]