Human Stem Cell Use: iPS Cell


Identifying sources of mutation in human induced pluripotent stem cells by whole genome sequencing

Stem cell research offers new tools to help treat and cure diseases that affect diverse cells types in the body such as neurological diseases, heart disease and diabetes by producing human cells for transplantation or to enable drug discovery . Recent advances have allowed researchers to generate patient-matched cell types from the skin or other […]

Induced Pluripotent Stem Cells for Tissue Regeneration

Induced pluripotent stem cells (iPSCs) have tremendous potential for patient-specific cell therapies, which bypasses immune rejection issues and ethical concerns for embryonic stem cells (ESCs). However, to fully harness the therapeutic potential of iPSCs, many fundamental issues of cell transplantation remain to be addressed, e.g., how iPSC-derived cells participate in tissue regeneration, which type of […]

Cellular tools to study brain diseases affecting synaptic transmission

There is a group of brain diseases that are caused by functional abnormalities. The brains of patients afflicted with these diseases which include autism spectrum disorders, schizophrenia, depression, and mania and other psychiatric diseases have a normal appearance and show no structural changes. Neurons, the cellular units of the brain, function by making connections (or […]

Antibody tools to deplete or isolate teratogenic, cardiac, and blood stem cells from hESCs

Purity is as important for cell-based therapies as it is for treatments based on small-molecule drugs or biologics. Pluripotent stem cells possess two properties: they are capable of self regeneration and they can differentiate to all different tissue types (i.e. muscle, brain, heart, etc.). Despite the promise of pluripotent stem cells as a tool for […]

Use of iPS cells (iPSCs) to develop novels tools for the treatment of spinal muscular atrophy.

Spinal Muscular Atrophy (SMA) is one of the most common lethal genetic diseases in children. One in thirty five people carry a mutation in a gene called survival of motor neurons 1 (SMN1) which is responsible for this disease. If two carriers have children together they have a one in four chance of having a […]

Engineering Defined and Scaleable Systems for Dopaminergic Neuron Differentiation of hPSCs

Human pluripotent stem cells (hPSC) have the capacity to differentiate into every cell in the adult body, and they are thus a highly promising source of differentiated cells for the investigation and treatment of numerous human diseases. For example, neurodegenerative disorders are an increasing healthcare problem that affect the lives of millions of Americans, and […]

Editing of Parkinson’s disease mutation in patient-derived iPSCs by zinc-finger nucleases

The goal of this proposal is to establish a novel research tool to explore the molecular basis of Parkinson’s disease (PD) – a critical step toward the development of new therapy. To date, a small handful of specific genes and associated mutations have been causally linked to the development of PD. However, how these mutations […]

Robust generation of induced pluripotent stem cells by a potent set of engineered factors

The recent discovery of iPSC (induced Pluripotent Stem Cell) technology marks a promising breakthrough in regenerative medicine. The beauty of the technology is its ability to convert adult mature cells into embryonic stem cells through the expression of a cocktail of essential factor genes. Thus, iPSCs bypass the ethical dilemma of using embryonic materials and […]

Developing a method for rapid identification of high-quality disease specific hIPSC lines

Elucidating how genetic variation contributes to disease susceptibility and drug response requires human Induced Pluripotent Stem Cell (hIPSC) lines from many human patients. Yet, current methods of hIPSC generation are labor-intensive and expensive. Thus, a cost-effective, non-labor intensive set of methods for hIPSC generation and characterization is essential to bring the translational potential of hIPSC […]

Use of hiPSCs to develop lead compounds for the treatment of genetic diseases

This study will use Ataxia-Telangiectasia (A-T), an early-onset inherited neurodegenerative disease of children, as a model to study the mechanisms leading to cerebellar neurodegeneration and to develop a drug that can slow or halt neurodegeneration. We will start with skin cells that were originally grown from biopsies of patients with A-T who specifically carry “nonsense” […]