Human Stem Cell Use: Embryonic Stem Cell
DECIPHERING THE INSTRUCTIONS FOR VERTEBRATE HSC SPECIFICATION AND AMPLIFICATION.
Hematopoietic stem cells (HSCs) are an important population of cells that continuously produce and replace blood and immune cells over the course of our lifetimes. These rare, self-renewing cells are the key element of bone marrow transplants, which are used to treat a variety of conditions including many forms of leukemia and solid tumors. Understanding […]
Transcriptional regulation of pluripotency in human embryonic stem cells
All of the diverse cells in the human body contain the same genetic information, and originally arose from a single cell, a fertilized egg. Embryogenesis is a result of cell division followed by differential gene expression, to selectively activate only the genes needed for development of each specialized cell type. By understanding the multiple gene […]
Understanding the status of the X chromosomes in human ESCs and preimplantation embryos
Human embryonic stem cells (hESCs) are able to divide indefinitely and under the proper conditions, can essentially become any cell in the human body. They are derived from the developing human embryo and carry great promise for regenerative medicine. However, these cells demonstrate an instability surrounding the state of the X chromosome. Male (XY) cells […]
Role of mechanical signaling in stem cell self-renewal and differentiation
Cells feel subtle but constant pushes and tugs from their neighbors inside living organisms. Surprisingly, these tiny mechanical cues have a profound effect on how stem cells grow, divide, and turn into the many different cells that make up the human body. Based on recent findings in developmental, cancer, and stem cell biology, we hypothesize […]
Stem Cell Mechanisms Governing Discrete Waves of Gliogenesis in the Childhood Brain
White matter is the infrastructure of the brain, providing conduits for communication between neural regions. White matter continues to mature from birth until early adulthood, particularly in regions of brain critical for higher cognitive functions. However, the precise timing of white matter maturation in the various neural circuits is not well described, and the mechanisms […]
Human Embryonic Stem Cell-Derived Cardiomyocytes for Patients with End Stage Heart Failure
Patients with end-stage heart failure have a 2-year survival rate of only 50% with conventional medical therapy. This dismal survival rate is actually significantly worse than patients with AIDS, liver cirrhosis, stroke, and other comparable debilitating diseases. Currently available therapies for end stage heart failure include drug and device therapies, as well as heart transplantation. […]
Stem cell based small molecule therapy for Alzheimer’s disease
Over 6 million people in the US suffer from AD. There are no drugs that prevent the death of nerve cells in AD, nor has any drug been identified that can stimulate their replacement. Even if nerve cells could be replaced, the toxic environment of the brain will kill them unless they are protected by […]
Human ES cell based therapy of heart failure without allogenic immune rejection
Heart failure is a major and ever-growing health problem affecting an estimated 5.8 million Americans with about half a million new cases every year. There are limited therapeutic options for heart failure. Heart transplantation is effective but has limited impact due to scarcity of donor organs and eventual immune rejection even under chronic immune suppression. […]
Heart Repair with Human Tissue Engineered Myocardium
Heart disease is the number one cause of morbidity and mortality in the US. With an estimated 1.5 million new or recurrent myocardial infarctions, the total economic burden on our health care system is enormous. Although conventional pharmacotherapy and surgical interventions often improve cardiac function and quality of life, many patients continue to develop refractory […]
Functional Neural Relay Formation by Human Neural Stem Cell Grafting in Spinal Cord Injury
We aim to develop a novel stem cell treatment for spinal cord injury (SCI) that is substantially more potent than previous stem cell treatments. By combining grafts of neural stem cells with scaffolds placed in injury sites, we have been able to optimize graft survival and filling of the injury site. Grafted cells extend long […]