Disease Focus: Skeletal/Smooth Muscle disorders


CRISPR/Cas9 nanoparticle enabled therapy for Duchenne Muscular Dystrophy in muscle stem cells

Research Objective Gene correction of muscle stem cells Impact These studies will develop a gene editing based therapy for one of the most prevalent lethal childhood disorders called Duchenne Muscular Dystrophy. Major Proposed Activities To identify the best MSNP-CRISPR candidates for CRISPR/Cas9 plasmid delivery in vitro to muscle stem cells To identify the best MSNP-STEM […]

Prodrug innovation to target muscle stem cells and enhance muscle regeneration

Research Objective To target therapeutics to muscle stem cells, the building blocks of skeletal muscle. Impact Drugs, genes and gene editing strategies can be delivered directly to muscle stem cells to alleviate disease. Major Proposed Activities Synthetic peptides based on the ectodomains of Myomaker will be synthesized, with a fluorophore conjugated for tracking. Alternatively, anti-Myomaker […]

Generation of expandable, self-renewing muscle stem cells for Duchenne Muscular Dystrophy

Research Objective The goal of this proposal is to define protocols to generate expandable, self-renewing human muscle stem cells (MuSC) from hiPS cells for Duchenne Muscular Dystrophy disease modeling and therapeutics. Impact The integration of STAT3i with current approaches to derive myogenic cells from hiPS cells would enable the generation of self-renewing MuSC that are […]

Novel Platforms to Enhance In Vivo Delivery of Skeletal Muscle Progenitor Cells from Human Pluripotent Stem Cells

Research Objective Delivery of muscle stem cells presents a major roadblock for therapy. We explore novel approaches to increase the efficiency of delivering and monitoring muscle stem cells derived from hPSCs. Impact Development of enhanced monitoring and delivery platforms will greatly accelerate translational strategies aimed at delivering muscle stem cells for transplantation to patients with […]

Curing bladder cancer by replacing corrupted urothelium with differentiated hES cells

Research Objective The goal of the proposed research is to use human embryonic stem cells to generate bladder epithelial progenitor cells that can be used to replace a cancerous bladder epithelium in vivo. Impact The long-term goal of the proposed research is to cure bladder cancer. Successful completion of this work may indicate that transplantation […]

Autologous iPSC-based therapy for radiation induced bladder injury

Research Objective To explore if iPSC-based therapy can prevent bladder damage due to radiation therapy, thereby limiting the unintended consequences of treatments for prostate, gynecologic and colorectal cancers. Impact This therapy impacts cancer survivors by preventing the permanent debilitating urinary symptoms due to radiation therapy. Currently there are no therapies to prevent radiation bladder damage. […]

Examining the efficacy of GDF11 antibody as a rejuvenator of aged human muscle stem cell capacity and muscle repair .

Research Objective To examine the efficacy of blocking blood borne GDF11 activity to rejuvenate aged human muscle stem cell regenerative capacity. Impact This project will provide a proof-of-principle that GDF11 inhibition can boost aged human skeletal muscle repair, and facilitate its translational potential. Major Proposed Activities Determine GDF11 protein levels in human sera as a […]

Development of MyoDys45-55, a gene editing therapy for Duchenne muscular dystrophy

Translational Candidate A gene editing therapy for Duchenne muscular dystrophy that permanently removes a hotspot region of patient mutations to restore dystrophin. Area of Impact Duchenne muscular dystrophy (DMD), a fatal muscle wasting disease with no cure. Mechanism of Action Our therapy uses CRISPR/Cas9 gene editing to permanently remove a hotspot region of DMD patient […]

Clinical Translation of hESC-derived protein therapy that positively regulates the regenerative capacity of post-natal muscle for treating DM1 

Translational Candidate We engineered a human embryonic stem cell-secreted signaling protein into a biologic for treatment of skeletal muscle disorders. Area of Impact Skeletal muscle disorders (including DM1 and sarcopenia) remain major unmet needs that require treatments restoring muscle strength and function. Mechanism of Action Our animal data demonstrate an endocrine stimulation by our biologic […]

Autologous iPSC-derived smooth muscle cell therapy for treatment of urinary incontinence

Translational Candidate Smooth muscle cell progenitors (pSMCs) differentiated from patient iPSCs which is injected into the urethral muscle to regenerate a a weak urethra. Area of Impact Surgery for urinary incontinence is effective in 80% of patients. Our target is those who failed surgery (20%), or those who cannot undergo surgery. Mechanism of Action Our […]