Disease Focus: Pediatrics


Stem Cell Therapy for Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is the most common and serious form of muscular dystrophy. One out of every 3500 boys is born with the disorder, and it is invariably fatal. Until recently, there was little hope that the widespread muscle degeneration that accompanies this disease could be combated. However, stem cell therapy now offers that […]

Developing a therapeutic candidate for Canavan disease using induced pluripotent stem cell

Canavan disease is a devastating disease of infants which affects their neural development and leads to mental retardation and early death. It occurs in 1 in 6,400 persons in the U.S. and there is no treatment so far. We propose to generate genetically-repaired and patient-specific stem cells (called iPSCs) from patients’ skin cells, and then […]

New Drug Discovery for SMA using Patient-derived Induced Pluripotent Stem Cells

Spinal muscular atrophy (SMA) is the leading genetic cause of infant death in the U.S. This devastating disease affects 1 child in every 6,000-10,000 live births, with a North American prevalence of approximately 14,000 individuals. The disease is characterized by the death of spinal cord cells called motor neurons that connect the brain to muscle. […]

Developing a drug-screening system for Autism Spectrum Disorders using human neurons

Autism and autism spectrum disorders (ASD) are complex neurodevelopmental diseases that affect 1 in 150 children in the United States. Such diseases are mainly characterized by deficits in verbal communication, impaired social interaction, and limited and repetitive interests and behavior. Because autism is a complex spectrum of disorders, a different combination of genetic mutations is […]

Identification of hESC-mediated molecular mechanism that positively regulates the regenerative capacity of post-natal tissues

The tissue regenerative capacity deteriorates with age in animals and in humans, leading to the loss of organ function, which is well exemplified in skeletal muscle, but is poorly understood in molecular terms. Our recent work uncovered that factors produced by human embryonic stem cells have a unique ability to enhance the regenerative responses of […]

Engineered immune tolerance by Stem Cell-derived thymic regeneration

Stem cell therapies have the potential to transform medicine by allowing the regeneration of tissues or organs damaged by disease or trauma. In order for stem cell therapies to proceed, it will be essential that the regulation of immune responses to the stem cell derived tissues be achieved. While the function of the immune system […]

Maternal and Fetal Immune Responses to In Utero Hematopoietic Stem Cell Transplantation

The immune system is the body’s defense system against disease and can recognize foreign cells. Because of this, stem cells and organs that are transplanted from one person to another are usually “rejected” by the immune system, forcing doctors to use powerful immune suppressive drugs with severe side effects. This natural defense system will therefore […]

Stem cell differentiation to thymic epithelium for inducing tolerance to stem cells

The thymus is an organ that plays a key role in controlling immune responses and immune tolerance. The thymus promotes immune tolerance by deleting and removing self-reactive T cells from the immune system. In addition, the thymus also helps drive the production of important suppressor T cell populations like regulatory T cells that also control […]

Mechanism of Tissue Engineered Small Intestine Formation

Short Bowel Syndrome is an expensive, morbid condition with an increasing incidence. Fundamental congenital and perinatal conditions such as gastroschisis, malrotation, atresia, and necrotizing enterocolitis (NEC) may lead to short bowel syndrome (SBS). NEC is the most common gastrointestinal emergency in neonates and primarily occurs in premature infants As rates of prematurity are increasing, so […]

Development of Induced Pluripotent Stem Cells for Modeling Human Disease

Human embryonic stem cells (hESC) hold great promise in regenerative medicine and cell replacement therapies because of their unique ability to self-renew and their developmental potential to form all cell lineages in the body. Traditional techniques for generating hESC rely on surplus IVF embryos and are incompatible with the generation of genetically diverse, patient or […]