Disease Focus: Neurological Disorders


Understanding the role of LRRK2 in iPSC cell models of Parkinson’s Disease

The goal of this research is to utilize novel research tools to investigate the molecular mechanisms that cause Parkinson’s disease (PD). The proposed work builds on previous funding from CIRM that directed the developed patient derived models of PD. The majority of PD patients suffer from sporadic disease with no clear etiology. However some PD […]

Induced Pluripotent Stem Cells for Tissue Regeneration

Induced pluripotent stem cells (iPSCs) have tremendous potential for patient-specific cell therapies, which bypasses immune rejection issues and ethical concerns for embryonic stem cells (ESCs). However, to fully harness the therapeutic potential of iPSCs, many fundamental issues of cell transplantation remain to be addressed, e.g., how iPSC-derived cells participate in tissue regeneration, which type of […]

Cellular tools to study brain diseases affecting synaptic transmission

There is a group of brain diseases that are caused by functional abnormalities. The brains of patients afflicted with these diseases which include autism spectrum disorders, schizophrenia, depression, and mania and other psychiatric diseases have a normal appearance and show no structural changes. Neurons, the cellular units of the brain, function by making connections (or […]

Use of iPS cells (iPSCs) to develop novels tools for the treatment of spinal muscular atrophy.

Spinal Muscular Atrophy (SMA) is one of the most common lethal genetic diseases in children. One in thirty five people carry a mutation in a gene called survival of motor neurons 1 (SMN1) which is responsible for this disease. If two carriers have children together they have a one in four chance of having a […]

Engineering Defined and Scaleable Systems for Dopaminergic Neuron Differentiation of hPSCs

Human pluripotent stem cells (hPSC) have the capacity to differentiate into every cell in the adult body, and they are thus a highly promising source of differentiated cells for the investigation and treatment of numerous human diseases. For example, neurodegenerative disorders are an increasing healthcare problem that affect the lives of millions of Americans, and […]

Development of Single Cell MRI Technology using Genetically-Encoded Iron-Based Reporters

Clinical application of cell transplantation therapy requires a means of non-invasively monitoring these cells in the patient. Several imaging modalities, including MRI, bioluminescence imaging, and positron emission tomography have been used to track stem cells in vivo. For MR imaging, cells are pre-loaded with molecules or particles that substantially alter the image brightness; the most […]

Editing of Parkinson’s disease mutation in patient-derived iPSCs by zinc-finger nucleases

The goal of this proposal is to establish a novel research tool to explore the molecular basis of Parkinson’s disease (PD) – a critical step toward the development of new therapy. To date, a small handful of specific genes and associated mutations have been causally linked to the development of PD. However, how these mutations […]

Development and preclinical testing of new devices for cell transplantation to the brain.

The surgical tools currently available to transplant cells to the human brain are crude and underdeveloped. In current clinical trials, a syringe and needle device has been used to inject living cells into the brain. Because cells do not spread through the brain tissue after implantation, multiple brain penetrations (more than ten separate needle insertions […]

Developing a method for rapid identification of high-quality disease specific hIPSC lines

Elucidating how genetic variation contributes to disease susceptibility and drug response requires human Induced Pluripotent Stem Cell (hIPSC) lines from many human patients. Yet, current methods of hIPSC generation are labor-intensive and expensive. Thus, a cost-effective, non-labor intensive set of methods for hIPSC generation and characterization is essential to bring the translational potential of hIPSC […]

Use of hiPSCs to develop lead compounds for the treatment of genetic diseases

This study will use Ataxia-Telangiectasia (A-T), an early-onset inherited neurodegenerative disease of children, as a model to study the mechanisms leading to cerebellar neurodegeneration and to develop a drug that can slow or halt neurodegeneration. We will start with skin cells that were originally grown from biopsies of patients with A-T who specifically carry “nonsense” […]