Training

Genetic Brake Key to Stem Cell Fate

Researchers at UC, Santa Barbara, have mapped the role of a genetic signal that puts the breaks on the ability of stem cells to self renew.

Protein protects brain from damage, may prevent neurodegenerative diseases

Researchers at the University of California, San Diego and the Salk Institute for Biological Studies have found a protein that protects the brain from the kind of damage that can lead to Parkinson's disease. This protein, called Nurr1, has a long history in Parkinson's disease research. People who carry a mutation in the gene are prone to developing the disease. The new work explains how the protein prevents Parkinson's disease and could also help researchers find ways of treating of preventing the disease.

Protein Flips Switch In Embryonic Stem Cell Growth

Researchers at the Burnham Institute for Medical Research and the Scripps Research Institute have found that a protein known to play an important role in maintaining mouse embryonic stem cells has a similarly crucial job in human embryonic stem cells. This protein, called Shp2, acts as a switch, telling the cells to either divide to make more of themselves – a process called self-renewal – or to mature into different cell types – called differentiation.

Support Cells Prevent Mature Heart from Repairing Damage

Researchers at the Gladstone Institute of Cardiovascular Disease may have discovered why developing heart muscles cells multiply in numbers while the adult counterparts do not. This finding could lead to therapies that roll back the clocks on heart muscle cells after injury such as a heart attack, allowing those cells to multiply and repair the damage. The researchers specifically looked at the role of cells called fibroblasts, which are packed in the heart amidst the muscle cells.

Protein in Pancreas May Lead to New Therapy for Type II Diabetes

Researchers at the Burnham Institute for Medical Research and the University of California, San Diego have found parallels between how the pancreas develops in the embryo and type II diabetes (also known as adult diabetes). When the pancreas develops in an embryo, a protein called Wnt (pronounced "wint) helps control how the cells mature into insulin-producing cells. In most adults, the pancreas contains very little Wnt protein, but in people with type II diabetes Wnt protein is abundant in the pancreas.

Neural Cells Can Mature into Ear Sensory Cells

Researchers at the University of California, Davis have coaxed cells from the brain to mature into the minute hair cells in the ear that are required for hearing. For many people with hearing loss, these tiny hair cells have died, leaving people unable to sense vibrations caused by sound. Regrowing functional hair cells that will sway in response to sound and send appropriate signals to the brain has been a major goal for stem cell researchers.

Origin of blood stem cells found to be in the lining of blood vessels

Researchers at UC, Los Angeles have found that blood-forming stem cells in mice have their origins in the endothelial cells that line blood vessels during mid-gestation. These cells eventually move to the bone marrow where they generate all the cells of the blood system throughout life. Researchers have long known that blood-forming stem cells arise from the blood vessels, but didn't know exactly which cell type acted as the source. Now that the source is know, the researchers want to learn what signals those endothelial cells to begin producing blood-forming stem cells.

Genetic Factor Enables Immature Cells to Form Normal Heart Tissue

Researchers at the Gladstone Institute for Cardiovascular Disease found a genetic factor that helps in the earliest stages of heart development as the primitive tube loops around on itself and forms the separate chambers. This factor -- a short relative of DNA called microRNA -- has an identical counterpart in humans, leading the researchers to believe that their work in fish is likely to relate directly to human heart development.

Genetic Factors Found to Speed Embryonic Stem Cell Division

Researchers at UC, San Francisco developed a novel way of finding out the role of DNA-relatives called microRNA. These molecules are known to turn genes on and off and appear to regulate whether embryonic stem cells remain as stem cells or develop into mature cell types, but learning which genes are controlled by each microRNA has been a challenge. Using this screen, the researchers found 14 microRNAs that speed up cell division; of those, five are commonly found in human embryonic stem cells.

Early immune cells created from embryonic stem cells

Researchers at UC, Los Angeles have created cells that go on to form normal T cells out of human embryonic stem cells. What's more, these cells were grown in the absence of animal feeder cells, which are usually needed to sustain embryonic stem cells. Avoiding potential contamination by such feeder cells is an important step in generating cells that can be transplanted into people. The researchers describe a series of steps that drive human embryonic stem cells to begin developing as T cells.

Pages

Subscribe to RSS - Training

© 2013 California Institute for Regenerative Medicine