Year 5 (Bridge)

This progress report covers the period between Sep 01 2013 through April 30 2014, and summarizes the work accomplished under ET funding TR101249. Under this award we developed a Wnt protein-based platform for activating a patient’s own stem cells for purposes of tissue regeneration.

At the beginning of our grant period we generated research grade human WNT3A protein in quantities sufficient for all our discovery experiments. We then tested the ability of this WNT protein therapeutic to improve the healing response in animal models of stroke, heart attack, skin wounding, and bone fracture. These experimental models recapitulated some of the most prevalent and debilitating human diseases that collectively, affect millions of Californians. At the conclusion of Year 2 an external review panel was assembled and charged with the selection of a single lead indication for further development. The scientific advisory board unanimously selected skeletal repair as the lead indication.

In year 3 we accrued addition scientific evidence, using both large and small animal models, demonstrating that a WNT protein therapeutic accelerated bone healing. Also, we developed new methods to streamline the purification of WNT proteins, and improved our method of packaging of the WNT protein into liposomal vesicles (e.g., L-WNT3A) for in vivo use.

In year 4 we clarified the mechanism of action of L-WNT3A, by demonstrating that it activates endogenous stem cells and therefore leads to accelerated bone healing. We also continued our development studies, by identifying a therapeutic dose range for L-WNT3A, as well as a route and method of delivery that is both effective and safe. We initiated preliminary safety studies to identify potential risks, and compared the effects of L-WNT3A with other, commercially available bone growth factors.

In year 5 we initiated two new preclinical studies aimed at demonstrating the disease-modifying activity of L-WNT3A in spinal fusion and osteonecrosis. These two new indications were chosen by a CIRM review panel because they represent an unmet need in California and the nation. We also initiated development of a scalable manufacturing and formulation process for both the WNT3A protein and L-WNT3A formulation. These two milestones were emphasized by the CIRM review panel to represent major challenges to commercialization of L-WNT3A; consequently, accomplishment of these milestones is a critical yardstick by which progress towards an IND filing can be assessed.