Year 4

The number and function of adult stem cells decrease with age in a number of tissues. In the nervous system, the depletion of functional adult neural stem cells (NSC) may be responsible for impaired cognitive performance associated with normal or pathological aging. Understanding the factors that govern the maintenance of adult NSC should provide insights into their regenerative potential and open new avenues to use these cells for therapeutic purposes during normal aging and age-related neurodegenerative disorders.

Clues to key regulators of stem cell functions may come from studies of the genetics of aging, as genes that regulate longevity may do so by maintaining stem cells. To date, the most compelling examples for genes that control aging in a variety of organisms include the insulin-Akt-Foxo transcription factor pathway and the Sirt deacetylases. We have recently found that Foxo3 regulates a network of genes in adult NSC and interact with another transcription factor, called Ascl1, to preserve the integrity of the NSC pool and prevent the premature exhaustion of this important pool of cells. In the past year, we have also made the surprising discovery that inactivating Sirt1 in adult neural stem cells leads to the increased production of oligodendrocyte progenitors, which are cells that are crucial for myelination and could help demyelinating diseases, such as multiple sclerosis, or demyeliating injuries such as spinal cord injuries. Importantly, the enzymatic activity of Sirt1 can be targeted by small molecules, underscoring the potential for Sirt1 as a therapeutic target in stem cell and oligodendrocyte production. In the last year, we have also made significant progress in using cellular reprogramming to investigate the role of longevity genes in human cells. Our work examines the mechanisms by which ‘longevity genes’ regulate stem cell function and maintenance. Harnessing the regenerative power of stem cells by acting on longevity genes will provide a novel angle to identify stem cell therapeutics for regenerative medicine.