Year 4
This CIRM Shared Laboratory Research and Teaching Facility continues to support a very large number of laboratories that are engaged in stem cell-related research at the University of California, San Francisco (UCSF). As to research, working with stem cells, particularly those derived from human sources, requires very rigorous laboratory conditions, essentially higher standards than are needed for work with less demanding models. The laboratory space in which our users work, which was remodeled with CIRM funds awarded via the Shared Laboratory mechanism, meets these standards. Additionally, work with stem cells often requires specialized pieces of equipment that enable us to test the effects of important variables such as the oxygen the cells “breathe.” We also have setups whereby stem cell scientists can carefully examine the cells with which they work, either by magnifying them using special optics or by molecular profiling. Finally, we stock laboratory supplies that are commonly used by most of the laboratories. By buying in bulk, we can offer our users substantial discounts over what they would pay as individual investigators. In addition, this mechanism provides substantial savings in time, as experiments need not be delayed waiting for reagents to arrive.
The investigators who work in our facility and use its equipment are doing an exciting array of projects that are representative of all the major themes of contemporary stem cell biology. For example, some investigators are doing work that addresses fundamental questions about the inner workings of stem cells, trying to understand their special properties in terms of being able to make identical copies of themselves and differentiate into the myriad components of the human body. Other investigators are addressing important questions regarding the body’s surveillance systems, which are designed to guard against infection, that may identify stem cell transplants as foreign and destroy them as they would any invader that might cause harm. Many of the projects are directly related to formulating regenerative medicine therapies for the most common diseases that dramatically affect quality of life or are life-threatening. These include diabetes, skeletal abnormalities, neurological problems, liver pathologies and blood disorders. Finally, our users study cancer in the context of stem cell biology as the same properties that make the latter cells so flexible in terms of their fate could help tumor cells escape the therapies that are designed to eradicate them.
The management team that directs this Facility has been in place from the beginning. Therefore, our methods of operation are very well established. The Faculty Directors are senior researchers with extensive experience in directing large-scale scientific efforts, including all the enabling technologies that this Facility offers. The director of operations is a very experienced stem cell biologist with outstanding technical, managerial and communication skills, which facilitates our interactions with the users, making sure that the laboratory and the equipment it contains are optimally used at all times. The day-to-day operations also involve a very strong team of individuals who as a group are experts in many areas of stem cell biology and the methods of analysis that are used in this field. Finally, the Facility greatly benefits from a strong oversight committee made up of leaders in the field of stem cell biology who also benefit from the resources we offer. Their guidance assures that we are responsive to our users’ needs while adopting state-of-the-art approaches.
In summary, our CIRM Shared Facility is running smoothly, providing important research infrastructure and services to the UCSF stem cell community. We do not expect any major changes in direction during the next year. As our previous history suggests, we think that our user base will grow.
As to teaching, we have a very active program that serves numerous Bay Area institutions, including UCSF, University of California Berkeley, Stanford, City College of Berkeley, San Francisco State University, Humboldt State University, the Blood Systems Research Institute and the City College of San Francisco. We presented 5 one-week long courses to trainees with diverse backgrounds, ranging from undergraduates to faculty members. The mornings were occupied with lectures, which began by providing a foundation in terms of the first 8 weeks of human development, which enabled a better understanding of stem cell origins and functions, topics that are also covered. Facility faculty gave these lectures. Top stem cell scientists at UCSF gave the remaining lectures. The afternoons were devoted to learning laboratory techniques that are critical to stem cell biology. Trainees learned how to culture human embryonic stem cells and related methods of analysis. The consistently high evaluations that the courses received were evidence of its value.