Year 4
Transient spinal cord ischemia is a serious complication associated with aortic cross clamping, i.e., the procedure required to replace aortic aneurysm. The major neurological deficit resulting from spinal ischemic injury is the loss of motor function in the lower extremities, also called paraplegia. The pathological mechanism leading to the loss of function is the result of progressive death of spinal cells (i.e., neurons) in the affected region of the spinal cord. At present there is no effective therapy for spinal ischemia-induced paraplegia. In our previous completed studies, we have characterized the survival and neuronal maturation of human embryonic stem cell-derived neural precursors grafted into the lumbar spinal cord in immunodeficient rats and have demonstrated good tolerability of long-term immunosuppression in rodents and minipigs after using subcutaneously implanted tacrolimus pellets. In our ongoing studies, our goal is to characterize the effect of clonally expanded embryonic stem cell-derived neural precursors after spinal grafting in long-term immunosuppressed rats and minipigs and immunodeficient rats with previous spinal ischemic injury.