Year 2
Embryonic stem cell-based therapies hold great promise for the treatment of many human diseases. These therapeutic strategies involve the culture and manipulation of embryonic stem cells grown outside the human body. Culture conditions outside the human body can encourage the development of changes to the cells that facilitate rapid and sustained cell growth. Some of these changes can resemble abnormal changes that occur in cancer cells. These include epigenetic changes, which are changes in the structure of the packaging of the DNA, as opposed to genetic changes, which are changes in the DNA sequence. Cancer cells frequently have abnormalities in one type of epigenetic change, DNA methylation. In this grant, we screened for DNA methylation abnormalities at a large number of genes in different embryonic stem cells and compare their DNA methylation profiles to normal and cancer cells. This allowed us to identify potentially dangerous DNA methylation abnormalities, which occur in cultured embryonic stem cells. In the first year of this seed grant, we have developed a custom microarray to screen for DNA methylation changes at predisposed genes. In addition, we have analyzed DNA methylation in embryonic stem cells at more than 14,000 genes on a generic platform. This has allowed us to identify hundreds of genes that are abnormally methylated in various types of human cancers, and that show some evidence of this alteration in ES cells.
In the last phase of our study, we have screened the DNA methylation level of 1,536 genes in 142 different human embryonic stem cell pairs. Each member of the pair differed in the length of time it was in culture. Thus, our sample set was comprised of 284 paired specimens, one derived from an early passage and one derived from a late passage.
Our results indicate that the levels of DNA methylation varied considerably at a significant portion of the screened genes, some of which gained and some of which lost DNA methylation. These results indicate that DNA methylation in human embryonic stem cells seems to be susceptible to change over, at least in the genes examined in this study. Overall, our results suggest that the monitoring of DNA methylation changes in human embryonic stem cells may have to be incorporated as a routine protocol in stem cell manipulation.