Year 2
A central goal of our CIRM SEED proposal was to use innovative unbiased approaches to discover novel proteins that turn genes on or off in pluripotent stem cells. An understanding of what are these proteins that act as genetic switches and how they function is of significant importance to efforts to use pluripotent stem cells to model disease states in the lab or to provide a source of cells of therapeutic interest for transplantation. We have been successful in our efforts, in that we identified a novel protein that appears to play an unexpected role in the regulation of gene activity in pluripotent stem cells. In addition, we have identified another protein that is critical to maintain the DNA of pluripotent stem cells is a state accessible to other proteins. Our research is therefore providing an integrated picture of what are the genetic switches that turn genes on or off in pluripotent stem cells, what genes do they regulate, and how is their access to DNA regulated. Some of our results have recently been published, while other research is ongoing. In parallel, we have been very successful at transferring expertise to the biotechnology sector in California. In particular, two highly qualified lab members accepted senior scientist positions at top biotechnology firms in California (iPierian and Genentech).