Year 2
Inherited retinal degenerations result in visual loss in patients early in life. Retinitis Pigmentosa, a form of genetic disorder leading to vision loss, affects thousands of patients in US and in the state of California. The second most common gene whose mutation results in retinitis pigmentosa is RP1. How mutation in the gene result in loss of vision is not completely clear and we are working of gaining a better understanding of this by creating a 3D artificial retina in a dish. This involves using stem-cell derived eye cells grown on patterned artificial scaffolds. In our second year of funding, we have optimized our 3D bioengineered scaffold design to closely match the retina in the human eye. In addition, we have now been able to show that the stem cells generated from blood cells of patient with a defect in RP1 gene as well as an unaffected sibling can be converted to the various cells in the retina including the light sensing cells, These cells following placement in bioengineered 3D scaffolds allows alignment of the cells as if they are inside the eye. During the final year of funding, we will work on understanding why the light sensing cells undergo degeneration and if potential identify pathways which we can target to slow down the cells loss as well as test if restoring the gene function will allow to promote repair.