Year 2

The overwhelming majority of human genes undergo extensive alternative splicing, but save for several dozens of these regulated splicing events, it is not known which proteins are responsible for controlling these key splicing decisions. Furthermore, mutations in several of these proteins, known as splicing factors, have recently been shown to be causative of neurodegeneration. In this proposal we aim to understand the importance of splicing factor regulation of alternative splicing in controlling pluripotency, fate decision towards the neural lineage and neuronal survival. In years one and two, we have made significant progress in analyzing the functions of three hnRNP proteins, namely TAF15, EWSR1 and hnRNP A2/B1. All three have been associated with neurological diseases, in particular ALS and FTD. We have also made progress in generating and successfully validating reagents to deplete the larger class of RNA binding proteins in human neural progenitors. Finally, we are making slower but steady progress in depleting RBFOX proteins in human neurons.