Year 2

The goal of the study is to develop a treatment for accelerating multiple vertebral fracture repair. Approximately 10 million people in the United States are diagnosed as osteoporotic, while an additional 34 million are classified as having low bone mass. Vertebral compression fractures (VCFs) are the most common fractures in the United States, accounting for approximately 700,000 injuries per year, twice the rate of hip fractures. Approximately 70,000 VCFs result in hospitalization each year with an average hospital stay per patient of 8 days. Current treatment of osteoporotic patients is mostly focused on prevention of VCFs mainly using new medicines such as Alendronate and Parathyroid Hormone (PTH). But there are no options of treatment when VCFs actually occur either than bed rest and pain medication.
Our goal is to induce efficient vertebral fracture repair by a combined treatment of adult stem cells and PTH. During the last year we treated osteoporotic animals (rodents) with human stem cells, isolated from bone marrow. The cells were injected to the blood circulation followed by PTH treatment for three weeks. In order to evaluate whether the injected cells migrated to the region of the spinal fractures, we used fluorescent cells. Using a highly sensitive camera we were able to track the injected cells in the body of the animals over 55 days. Our results showed that more cells targeted the spine region when PTH was given to the animals compared to a control group that did not receive PTH. In addition, we analyzed the effect of the stem cell treatment on the repair of spinal fractures. Using high resolution CT imaging we found that osteoporotic animals treated with stem cells and PTH had significantly more bone fracture repair when compared to untreated animals and to animals treated with PTH or stem cells only.
In conclusion, we have generated promising results demonstrating the efficiency of stem cell therapy combined with PTH for the treatment of vertebral fractures. We will further explore this effect in the 3rd year of the project, aiming to promote this therapy further towards clinical use.