Year 2

Dormant cancer stem cells (CSC) contribute to therapeutic resistance and relapse in chronic myeloid leukemia (CML) and other recalcitrant malignancies. Cumulative data demonstrate that overexpression of BCL2 family pro-survival splice isoforms fuels quiescent CSC survival in human blast crisis (BC) CML. Whole transcriptome RNA sequencing data, apoptosis PCR array and splice isoform specific qRT-PCR demonstrate that human CSC express anti-apoptotic long BCL2 isoforms in response to extrinsic signals in the marrow niche, indicating that a pan BCL2 inhibitor will be required to abrogate CSC survival. Sabutoclax, a novel pan BCL2 inhibitor, prevents survival of BC CSC engrafted in RAG2-/-c-/- mice, commensurate with downregulation of pro-survival BCL2 splice isoforms and proteins, and sensitizes CSC to a BCR-ABL inhibitor, dasatinib, while exerting minimal cytotoxicity toward normal hematopoietic stem cells. Because sabutoclax inhibits all six anti-apoptotic BCL2 family members, with good chemical, plasma and microsomal stability, in addition to a scaleable production process, we anticipate that it will have broad clinical utility for targeting apoptosis resistant quiescent human CSC in a number of recalcitrant malignancies as featured in our recent lead article (Goff D et al, Cell Stem Cell. 2013 Mar 7;12(3):316-28).

Significant progress against milestones in the second year was accomplished and we have made early progress on several milestones projected for Year 3. Whole transcriptome RNA sequencing, qRT-PCR array and splice isoform specific qRT-PCR analysis performed on FACS purified progenitors derived from 8 CP, 8 BC and 6 normal samples demonstrated splice isoform switching favoring pro-survival long isoform expression during progression from CP to blast BC CML and in CSC engrafted in the bone marrow (BM) niche. Both human BCL2 and MCL1 protein expression co-localized with engrafted human leukemic CD34+ cells in the bone marrow epiphysis and served as important biomarkers of response to sabutoclax. Importantly, intravenous treatment with sabutoclax reduced BC CML CSC survival in both marrow and splenic niches at doses that spared normal hematopoietic stem cells in RAG2-/-gamma c-/- xenograft models established with cord blood CD34+ cells.

While dasatinib treatment alone increased serially transplantable quiescent BC CML CSC in BM, sabutoclax decreased CSC survival commensurate with upregulation of short pro-apoptotic and downregulation of long anti-apopoptotic BCL2 family isoforms. While previous studies involved intraperitoneal administration, in the last 12 months we have focused on a more clinically relevant intravenous (IV) administration schedule with IV sabutoclax administered alone or in combination with oral dasatinib. In these studies, sabutoclax sensitized quiescent CSC to dasatinib resulting in a significant decrease in CSC survival versus dasatinib alone. Moreover, mice serially transplanted with human cells from combination treated mice had increased survival compared to serial transplants of single agent treated tissues. Human CD34+ cells from the BM of combination treated mice had more cells in cycle than CD34+ cells compared to the BM of mice treated with dasatinib alone. The frequency of CD34+BCL2+ and CD34+MCL1+ BC CSC were significantly lower in BM treated with a combination of sabutoclax and dasatinib suggesting that the combination acts synergistically to decrease CSC survival and increase the lifespan of CSC engrafted mice.

During this 12-month reporting period, sabutoclax production was successfully scaled up by two separate CMOs, Syncom and Norac. Dr. Pellecchia (SBMRI) provided flash chromatography purified sabutoclax to Dr. Jamieson for use in cellular and in vivo studies in addition to conducting QC analyses (integrity and purity) on scaled up sabutoclax formulations produced by Norac (4g) and Syncom (30g) in different vehicles. In formulation studies, a flash chromatography method was developed and qualified that separates impurities and degradation compounds from sabutoclax. Additional solubility and stability studies were performed to identify an IV Solutol formulation, compared with the previous IP DMSO/PBS Tween formulation, which could be used for both pre-clinical studies and in future clinical trials. Pilot PK studies in mice and rats were conducted with the Solutol formulated sabutoclax and showed weight loss associated with impurities that could be readily removed by standard flash chromatography. As a result, ssabutoclax production will include flash chromatography to enhance purity and stability and this material will be used for further PK and PD studies. In conclusion, we are on track to accomplish our milestones as set forth in the grant and anticipate that sabutoclax will form the basis of combination clinical studies aimed at eradicating quiescent CSC in a broad array of refractory malignancies.