Year 2
Cardiovascular disease is a major source of morbidity and mortality in our society. In this case, cardiac arrhythmias are leading cause of sudden cardiac death. Therefore, it is empirical to identify the source and mechanisms of cardiac arrhythmias. The long-term objectives of our laboratory is identify the key molecules that are involved in differentiation and formation of cardiac conduction system. We utilize mouse as a model system to identify the molecular pathways leading the formation of cardiac conduction cells.
In the past year we have identified some of regulatory pathways that allows for the proper formation of cardiac conduction tissue. We are using mice that have specific mutations in the cells of cardiac conduction system to identify these special pathways. One such molecule that orchestrates the differentiation of cardiac conduction cells is Nkx2-5. We have determined that loss of this transcription factor is of significant detriment to the health of cardiac conduction and is the underlying factor in common arrhythmias. Our ultimate goal is to utilize the information obtained by our studies in mice, and apply them towards therapeutic functions in humans. To this end, we are trying to develop a mechanism to reprogram cardiac stem cells to behave like conduction system cells. Ultimately, this approach would be used towards stem cell therapy for cardiac arrhythmias.