Year 2

The transplantation of blood forming stem cells from one individual to another can alter the recipient immune system in profound ways. Transplanted blood forming cells can condition the recipient to accept organs from the original stem cell donor without the need for drugs to suppress their immune system. Such transplantations can also be curative of autoimmune diseases such as childhood diabetes and multiple sclerosis. Modification of the immune system in these ways is called immune tolerance induction.

The major goal of this project is to enable the use of blood forming stem cell transplantation for the purpose of immune tolerance induction without unwanted side effects. The current practice of blood stem cell transplantation is associated with serious risks, including risk of death in 10-20% of recipients due to complications of transplant conditioning and graft-versus-host disease. We aim to abolish or reduce the risks of these transplantations so that this curative form of stem cell therapy can safely treat patients who need an organ graft or who suffer from an autoimmune disorder. To achieve our goals, we proposed the development of methods to prepare patients to accept blood forming stem cell grafts with reagents that specifically target recipient cell populations that constitute the barriers to engraftment, and to transplant only purified blood forming stem cells, thereby avoiding graft-versus-host disease.

The proposal has four Specific Aims. Aims 1 and 2 focus on development of biologic agents that specifically target recipient barrier cells. Aims 3 and 4 propose testing the reagents and approaches developed in the first two aims in mouse models to induce tolerance to co-transplanted tissues and to cure animals with muscular dystrophy, Type 1 diabetes mellitus and multiple sclerosis. These aims have not changed in this reporting period.

In this reporting period, significant progress has been made in the first three aims. In prior years we identified a biologic reagent that has the potential to replace toxic radiation and chemotherapy. Radiation and chemotherapy are used in transplantation to eliminate the blood forming stem cells of recipients because recipient stem cells block the ability of donor cells to take. The novel reagent we have studied is a protein, called a monoclonal antibody, which differs from radiation and chemotherapy because it specifically targets and eliminates recipient blood stem cells. This antibody reagent recognizes a molecule on the surface of blood stem cells called CD117. In years 1 and 2 we began testing of an anti-human CD117 (anti-hCD117) antibody in mice. Mice were engrafted with human blood cells and we showed that this antibody safely and specifically eliminated the human blood forming cells. These studies were proof-of-concept that the antibody is appropriate for use in human clinical trials.

This last year we were awarded a CIRM Disease Team grant to move the testing of this anti-hCD117 from the experimental phase in mice to a clinical trial for the treatment of children with a disease call severe combined immunodeficiency (SCID), also known as the “bubble boy” disease. Children with SCID are missing certain types of white blood cells (lymphocytes) so they cannot defend themselves from infections. Without a transplant, children with SCID will die. The use of the anti-CD117 antibody and transplantation of purified blood forming stem cells has the potential to significantly reduce the complications of such transplants and improve the outcomes for these patients. The use of the anti-CD117 antibody and transplantation of purified blood forming stem cells has the potential to significantly reduce the complications of such transplants and improve the outcomes for these patients. The trial will be the first step to using this form of targeted therapy and serve as a pioneering study for all indications for which a blood forming stem cell transplant is needed, including the induction of immune tolerance.

In the last year we have moved forward with the purification of skeletal muscle stem cells based upon labeling and sorting of primitive muscle cells that express an array of molecules on the cell surface. We have also transplanted a special strain of mice (mdx) that are a model for muscular dystrophy with blood forming stem cells from normal mouse donors. In the coming year we will perform simultaneous transplants of blood forming stem cells and skeletal muscle stem cells from normal donor mice into the mdx mice. We will determine if the blood stem cells permit the long-term survival of the muscle stem cells in recipients transplanted across histocompatibility barriers. Our ultimate goal is to achieve long-term recovery of muscle cell function in the recipients of these co-transplantations.