Year 2
Nearly 500,000 people in the US die of sudden cardiac death each year, and long QT syndrome (LQTS) is a major form of sudden cardiac death. LQTS can be triggered by drug exposure or stresses. Drug-induced LQTS is the single most common reason for drugs to be withdrawn from clinical trials, causing major setbacks to drug discovery efforts and exposing people to dangerous drugs. In most cases, the mechanism of drug-induced LQTS is unknown. However, there are genetic forms of LQTS that should allow us to make iPS cell–derived heart cells that have the key features of LQTS. Our objective is to produce a cell-based test for LQTS with induced pluripotent stem (iPS) cell technology, which allows adult cells to be “reprogrammed” to be stem cell–like cells.
Despite the critical need, current tests for drug-induced LQTS are far from perfect. As a result, potentially unsafe drugs enter clinical trials, endangering people and wasting millions of dollars in research funds. When drugs that cause LQTS, such as terfenadine (Seldane), enter the market, millions of people are put at serious risk. Unfortunately, it is very difficult to know when a drug will cause LQTS, since most people who develop LQTS have no known genetic risk factors. The standard tests for LQTS use animal models or hamster cells that express human heart genes at high levels. Unfortunately, cardiac physiology in animal models (rabbits and dogs) differs from that in humans, and hamster cells lack many key features of human heart cells. Human embryonic stem cells (hESCs) can be differentiated into heart cells, but we do not know the culture conditions that would make the assay most similar to LQTS in a living person. These problems could be solved if we had a method to grow human heart cells from people with genetic LQTS mutations, so that we know the exact test conditions that would reflect the human disease. This test would be much more accurate than currently available tests and would help enable the development of safer human pharmaceuticals.
Our long-term goal is to develop a panel of iPS cell lines that better represent the genetic diversity of the human population. Susceptibility to LQTS varies, and most people who have life-threatening LQTS have no known genetic risk factors. We will characterize iPS cells with well-defined mutations that have clinically proven responses to drugs that cause LQTS. These iPS cell lines will be used to refine testing conditions. To validate the iPS cell–based test, the results will be directly compared to the responses in people. These studies will provide the foundation for an expanded panel of iPS cell lines from people with other genetic mutations and from people who have no genetically defined risk factor but still have potentially fatal drug-induced LQTS. This growing panel of iPS cell lines should allow for testing drugs for LQTS more effectively and accurately than any current test.
To meet these goals, we have made a series of iPS cells that harbor different LQTS mutations. These iPS cells differentiate into beating cardiomyocytes. We are now evaluating these LQTS cell lines in cellular assays. We are hopeful that our studies will meet or exceed all the aims of our original proposal.