Year 1
Coronary heart disease is the leading cause of death in the developed world. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries. Blockage of these arteries cut off supplies of nutrients and oxygen to the heart muscle, causing heart attacks, heart failure or sudden death. To restore coronary blood supply, physicians use guide-wires to position an inflatable balloon at the blockage site of the artery, where the balloon is inflated to open up the artery. This procedure is called percutaneous transluminal coronary angioplasty or PTCA, which is usually accompanied by the placement of a metal tube (or stent) at the diseased site to maintain vessel opening. However, as a response to PTCA, cells from the vessel wall are mobilized to divide and grow into the vessel lumen, causing re-narrowing of the artery. Renarrowing of the vessel lumen is the major hurdle limiting the success of PTCA. Mental stents which contain drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis). This sudden occlusion is caused by a concomitant drug inhibition of cells that cover the raw surface of metal stents to prevent platelet aggregation. This complication is frequently lethal, resulting in death or heart attack in 85% of cases. The safety concerns over DES have created an urgent need to define the mechanisms underlying the biology of vascular re-narrowing.
A population of cells resident in the vessel wall consists of stem cells that divide and grow into the vessel lumen when vessels are injured. The repair process mediated by these cells directly contributes to vessel re-narrowing. Our goal is to understand the biology of these stem cells in the repair of injured arteries- how vessel injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing. This will provide a solid scientific basis for new therapeutic targets and strategies for vessel re-narrowing after PTCA.
In the past year, we have successfully developed in the laboratory a more efficient method of isolating the vessel wall stem cells (or adventitial stem cells) and growing these cells in test tubes. The ability to isolate and grow these stem cells has allowed us to study the effects of many biologically active molecules on these cells critical for vascular repair and re-narrowing. We are now using this method to study molecular pathways that can modify the biological behavior of the vessel wall stem cells. Furthermore, we have developed a different method of injuring the blood vessels to study how the vessel wall stem cells respond to different types of vessel injury. This method allows us to track the mobilization of vessel wall stem cells more precisely in the vascular repair process. We are using this method to study the activity of vessel wall stem cells following injury.