Year 1
We identified a putative tumor-initiating stem/progenitor cell that goes rise to smoking-associated non small cell lung cancer (NSCLC). We examined 399 NSCLC samples for this tumor-initiating stem/progenitor cell and found that the presence of this cell in the tumor gave rise to a significantly worse prognosis and was associated with metastatic disease. This stem/progenitor cell is known to be important for repair of the airway and is present in precancerous lesions. We believe that this cell undergoes aberrant repair after smoking injury, which leads to lung cancer. We are currently trying to identify the genetic and epigenetic mechanisms involved in this aberrant repair as a means to identify a novel therapy to prevent the development of lung cancer. The presence of these stem/progenitor cells may also be used as a biomarker of poor prognostic NSCLC even in early stage disease.
We have identified markers on these stem/progenitor tumor-initiating cells and identified sub-populations of these cells. We are now determining the stem cell capabilities of each of these sub-populations. We are using a model of the development of lung cancer to determine if giving a stem/progenitor cell sub-population for repair can prevent NSCLC from developing.
We examined the blood of patients diagnosed with a lung nodule for circulating epithelial stem/progenitor cells. We found that the presence of these cells in the blood of patients predicted the presence of a subtype of NSCLC as compared to a benign lung nodule. We are currently obtaining many more blood samples from patients to further determine whether circulating epithelial stem/progenitor cells could be used as a biomarker of early NSCLC.