Year 1

Segmental bone fractures constitute a complex medical condition with no effective treatment. These injuries cause great suffering to patients, long-term hospitalization, repeated surgeries, loss of working days, and considerable costs to the health system. It is well known that autologous bone grafts (autografts) that are harvested from the patient, are considered the gold-standard therapy for these bone defects. Yet these grafts are not always available, and their harvest often leads to prolonged postoperative pain and comorbidity at the donor site. Bone allografts obtained from tissue banks are readily available, but lead to poor graft-host integration resulting in numerous failures. We have previously shown that mesenchymal stem cells (MSCs) engineered with a specific bone-forming gene can be used to achieve complete regeneration of segmental fractures in long bones. However, such an approach requires several steps—cell isolation, expansion, and engineering—which could complicate and prolong the regulatory pathway to clinical use. An alternative approach would be to gene-modify endogenous stem cells that reside within in the body. We were the first to show, in a rodent model, that a segmental bone defect can be completely repaired by recruitment of endogenous stem cells to the fracture site followed by direct gene delivery. In this research project we aimed to further promote this therapeutic approach to clinical studies. During the first year of the project we investigated the use of an ultrasound system to deliver genes to feature sites. Our results showed that we were able to deliver the genes to 40-50% of the cells residing in the fracture site. Moreover, 70-90% of the cells that received the genes were identified as stem cells, which are the target of the therapeutic approach. Our next goal would be to deliver bone-forming genes to stem cells in the fracture site in order to induce complete defect repair.