Year 1
Human adult stem cell therapies for the treatment of chronic wounds have shown considerable promise. However, appropriate delivery systems are needed to apply these therapies in the clinic. This award funds the development of stem cell delivery systems for the treatment of chronic wounds. We envisioned that tunable hydrogels can be used to deliver stem cells to wounds. Over the past year we have been engineering hydrogels for this application. First, we screened large libraries of small molecules and identified a variety of stem cell-specific small molecules. These molecules have the ability to bind to stem cells. So far we have demonstrated that the small molecules can capture stem cells on 2-D surfaces. In the upcoming years we will determine their ability to hold stem cells within hydrogels. We expect that the different small molecules will have different effects on the stem cells. So we will also test for this. In addition, we have developed a variety of hydrogels that degrade at different rates. We have demonstrated that these hydrogels can polymerize within a living organism and that their degredation rate can be set by their building blocks. In the upcoming year(s) we will attach our stem cell-specific small molecules to our hydrogels and then use these hydrogels to treat chronic wounds.