Year 1

Formation of the insulated fiber infrastructure of the human brain (called “myelin”) depends upon the function of a precursor cell type called “oligodendrocyte precursor cells (OPC)”. The first Aim of this study seeks to determine how OPCs differ from each other in different regions of the brain, and over different ages. Understanding this heterogeneity is important as we explore the regenerative capacity of this class of precursor cells. We have, in the past year, isolated OPCs from various regions of the human brain from individuals at various ages and are studying the molecular characteristics of these precursor cells at the single cell level in order to define distinct OPC subpopulations. We have also begun to study the functional capabilities of OPCs isolated from different brain regions. The second Aim of this study seeks to understand how interactions between electrically active neurons and OPCs affect OPC function and myelin formation. We have found that when mouse motor cortex neurons “fire” signals in such a way as to elicit a complex motor behavior, much as would happen when one practices a motor task, OPCs within that circuit respond and myelination increases. This affects the function of that circuit in a lasting way. These results indicate that neurons and OPCs interact in important ways to modulate myelination and supports the hypothesis that OPC function may play a role in learning.