Year 1

Overexpression of Bcl-2 family genes may fuel CSC survival. Recent RNA sequencing data demonstrate that human CSC express a panoply of antiapoptotic Bcl-2 isoforms in response to extrinsic signals in vivo, indicating that a pan Bcl-2 inhibitor will be required to abrogate CSC survival. Sabutoclax inhibits growth of blast crisis CML CSC engrafted in RAG2-/-c-/- mice with minimal cytotoxicity toward bax-/-bak-/- cells. Because sabutoclax inhibits all six antiapoptotic Bcl-2 family members including Bcl-2, Mcl-1, Bcl-XL, Bfl-1, Bcl-W and Bcl-B proteins, with good chemical, plasma and microsomal stability, we anticipate that it will have clinical utility for targeting apoptosis resistant human CSC in malignancies

Significant progress against milestones in the first year was accomplished and we have made early progress on several milestones projected for Year 2. During this 6 month reporting period, sabutoclax was licensed by a biotech company, Oncothyreon. The license was previously held by Coronado Biosciences. Dr. Pellecchia (SBMRI ) continues to provide sabutoclax to Dr. Jamieson for use in cellular and in vivo studies. SBMRI conducted QC analyses (integrity and purity) on samples’ used in preclinical studies and provided comparative analyses of compound produced by the CMO produced by different methods of synthesis. Importantly, the sabutoclax manufacturing process was optimized allowing scale-up of drug. In formulation studies, a method was developed and qualified that separates impurities and degradation compounds from sabutoclax for quantitation of the drug. Additional solubility and stability studies were performed by Oncothyreon to identify an IV formulation that could be used for both nonclinical studies and the clinic. Several pilot PK studies in mice, rats and dogs, planned for Year 2, were also conducted by Oncothyreon. Through whole transcriptome RNA sequencing Dr. Jamieson showed that Bcl-W was up-regulated in CP and BC progenitors compared to normal CB progenitors. Previous qRT-PCR results for Mcl-1 were confirmed, showing that the long isoform was preferentially expressed in BC CML. Results for Bcl-2 and Mcl-1 were also confirmed at the protein level by FACS analysis and immunohistochemistry of bone marrow (BM) from mice engrafted with human CML CD34+ LSC.

Sabutoclax treatment ablated BC CML progenitor cells in vivo and in vitro. Colony formation of BC CML (vs normal progenitor cells) was decreased by sabutoclax in a dose dependent manner. When CML cells were co-cultured with stromal cells or in stroma conditioned media, BCL-2 mRNA expression was increased and colony formation was improved. Knockdown of endogenous BCL2 in BC CML cells by shRNA resulted in decreased colony formation. Preliminary results suggest that BM is a protective niche for BC CML CSC and that sabutoclax may target these niche protected cells.

In BC CML engrafted mice, dasatinib increased quiescent BC CML cell engraftment in mouse BM measured by FACS for cell cycle markers. Sabutoclax decreased BCL-2 and MCL1 protein expression by immunohistochemistry staining and decreased quiescent BC CML CSC in BM however sabutoclax increased TUNEL staining in BM suggesting that while dasatinib may increase the number of quiescent BC CML CSC, sabutoclax may do the reverse.

High doses of sabutoclax administered in combination with dasatinib resulted in a significant decrease in human cell engraftment in BM versus dasatinib alone. Mice serially transplanted with tissues from combination treated mice had increased survival compared to serial transplants of single agent treated tissues. Human CD34+ cells from the BM of combination treated mice had more cells in cycle than CD34+ cells compared to the BM of mice treated with dasatinib alone. The frequency of CD34+BCL2+ and CD34+MCL1+ BC LSC were significantly lower in BM treated with a combination of sabutoclax and dasatinib suggesting that sabutoclax and dasatinib may act synergistically to increase survival of BC CML engrafted mice.