Year 1

Stem cells offer tremendous potential to treat previously intractable diseases. However, the clinical translation of these therapies presents unique challenges. One of which is the absence of robust methods to monitor cell location and fate after delivery to the body. The delivery and biological distribution of stem cells over time can be much less predictable compared to conventional therapeutics, such as small-molecule therapeutic drugs. This basic fact can cause road blocks in the clinical translation, or in the regulatory path, which may cause delays in getting promising treatments into patients. My research aims to meet these challenges by developing new non-invasive cell tracking platforms for emerging stem cell therapies. Recent progress in magnetic resonance imaging (MRI) has demonstrated the feasibility of non-invasive monitoring of transplanted cells in patients. This project will build on these developments, by creating next-generation cell tracking technologies with improved detectability and functionality. In year 1 of this project, we have begun to evaluate emerging stem cell imaging technologies called MRI reporters, or DNA-based instructions, that when placed into a cell’s genome causes the cell to produce a protein that is detectable with MRI. We have constructed human neural progenitor cell (NPC) lines that integrally contain the MRI reporter so that the primary cell and its progeny can be visualized using MRI. This technology enables long term tracking of the NPCs’ fate and movements in the body. We use an NPC cell type that is currently being used in clinical trials to treat major diseases such as ALS and spinal cord injury. Our initial MRI experiments in a model system have demonstrated MRI detection of NPCs following transfer into the brain. In other developments over the past year, we have helped build a new multi-modal in vivo molecular imaging center at the Sanford Consortium for Regenerative Medicine. This new resource is now fully functional and is able to serve a broad range of stem cell investigators at the Consortium, adjacent academic institutions, and local industry. Ongoing activities include the implementation of the most up-to-date methodologies for in vivo cell tracking using the molecular imaging instruments, as well as educating stem cell scientists at the Sanford Consortium and elsewhere in the region about the value of non-invasive imaging for accelerating their research.