Year 1
The objective of our collaborative project is the development of therapeutic candidates that will form the basis of IND submissions designed to test a novel class of drugs for the treatment of tumor initiating cells (TICs) in three solid human malignancies where TICs have been implicated in the pathogenesis of disease. The target profile is the TIC population in colon cancer, ovarian cancer and glioblastoma. The therapeutic compounds that have been developed in the course of the collaboration target a pair of serine-threonine kinases that act at the nexus of mitosis, hypoxia, and DNA repair. These enzymes are over-expressed in many forms of cancer and alterations in their expression patterns correlate with dysregulation of a number of genes that are significantly linked to poor patient outcome.
Compounds against the first target have been developed to the point at which a developmental candidate can be selected. The compounds show single digit nanomolar potency in vitro, adequate specificity, appropriate pharmacokinetics to support oral delivery, and the ability to trigger growth inhibition and cell death in a wide panel of tumor cell lines and TICs from the three targeted histologies. Recently completed dose and schedule studies have been used to design and implement tumor model studies. The compound that demonstrates the widest therapeutic index will be selected for IND enabling studies. These IND enabling studies will include synthetic scale-up, toxicity evaluations, combination studies, mechanism of action studies, and a biomarker identification program that will be used to identify a targeted population for optimal clinical trial design.
The medicinal chemistry program against the second target was started approximately 15 months after the initiation of the effort against the first target. Sufficient potency, specificity, and activity against tumor cell lines and TICs have been demonstrated with novel molecules. Current efforts are focused on improving the pharmacokinetic properties of the drug candidates.
A phospho-flow platform to measure mRNA levels, protein levels, and enzymatic activity using a mass spectrometric readout has also been tested. This system enables the simultaneous measurement of up to 35 different biomolecules. A data management system has been developed to facilitate the associated complex data analysis. Proof or principle experiments have demonstrated that this experimental paradigm can be used to reconstruct the developmental lineages of all progeny downstream of hematopoietic stem cells from human and mouse bone marrow. This approach has recently been applied to the analysis of ovarian cancer cells taken directly from patients. The results of these studies suggest that cancer cells are clearly heterogenous, but perhaps most importantly can be organized into developmental lineages that are formally similar to those seen in bone marrow development. Furthermore, this platform can assess the response of individual subcomponents of the oncological lineage to both approved and experimental drugs. We will be using this platform to gain insight into how tumors respond to individual drugs, including our drug candidates, and combination studies. It is reasonable to expect that it will be possible to not only assess the response of the cancer stem cells, but all subtypes of the tumor lineage.