Year 1

The primary aim of this project is to develop treatments for incurable diseases of the blood and immune system. X-linked Severe Combined Immunodeficiency (X-SCID) and Fanconi anemia (FA) are two blood diseases where mutations in a single gene results in the disease. XSCID, more commonly known as the “bubble boy” disease, is characterized by a complete failure of the immune system, and typically results in early childhood fatality. The most common treatment for X-SCID is bone marrow transplant using a matched sibling donor. Unfortunately, the lack of suitable donors limits the application of this treatment. In 2000, the first gene therapy “success” resulted in X-SCID patients with a functional immune system. These trials were stopped when it was discovered that several patients in one trial had developed lymphoma, a blood related cancer resulting from unintended consequences of the therapy. FA is a disease where the stability of the genome is compromised and results in premature cell death and lethal anemia. Gene therapy trials for such patients have been largely unsuccessful due to the inability to culture the cells long enough for the correction of the gene. Like XSCID there is a shortage of suitable bone marrow donors for patients, thus development of treatments via other methods is warranted.

From this study and others we have learned: 1) gene therapy can work to cure certain diseases, 2) adequate safeguards must be developed to prevent unintended cancer formation, and 3) we need better sources of matched cells and tissues to avoid the problems of rejection.

We proposed to reprogram a patient’s skin, or even hair follicle back to an induced pluripotent stem (iPS) cell, which is similar to embryonic stem cells, without involving embryo destruction. The iPS cell is a good candidate for repair of the specific genetic defects that cause diseases like X-SCID and FA. We have reprogrammed many patients cells to generate iPS. More importantly, we have gotten early hints of success in making hematopoietic stem cells and other blood cells from them. We have also started to make iPS cells from both X-SCID patients.