Year 1
Arthritis is the result of degeneration of cartilage (the tissue lining the joints) and leads to pain and limitation of function. The annual economic impact of arthritis in the U.S. is estimated at over $120 billion, representing more than 2% of the gross domestic product. The prevalence of arthritic conditions is also expected to increase as the population increases and ages in the coming decades. Current treatment options for osteoarthritis are limited to pain reduction and joint replacement surgery.
Stem cells have tremendous potential for treating disease and replacing or regenerating the diseased tissue. In this grant we proposed a series of experiments to develop stems cells for use in arthritis.
We have met all the milestones we proposed in the first year of the grant application. We have differentiated embryonic stem cells into cells that can generate cartilage tissue similar to that generated by normal cartilage cells. We have induced pluripotency in adult human cells obtained from skin. Inducing pluripotency means transforming adult cells into cells that function very similar to embryonic stem cells. The advantage of this approach is that it removes the need for embryos as source of cells and greatly reduces the risk of rejection by the patient. We have also induced pluripotency in adult human cells obtained from joint cartilage. We believe that the original source of the cells may make a significant difference in the quality of the tissue being regenerated. For example, pluripotent cells generated from cartilage cells will likely produce a better quality of cartilage tissue than pluripotent cells generated from skin cells.
We have established conditions for successful repair of surgical defects using stem cells in laboratory models. We are currently working on an appropriate surgical technique for the in vivo experiments, which will involve implanting these cells in cartilage defects in live animals.
We have completed our experiments as outlined in our grant submission, which was the goal to enhance the development of cartilage by testing of various stem cells lines. The next phase of our project will be to prepare for the animal experiments to test the viability of our laboratory experiments that would result in cartilage repair.