The U.S. Renal Data System has reported that the rate of pediatric end stage renal disease has tripled since 1980. Congenital anomalies of the kidney are responsible for the majority of chronic renal failure and end stage disease in young children, with congenital obstruction of the urinary tract the most common. These studies are driven by the fact that the clinical condition of congenital urinary tract obstruction is one of the most important problems affecting young children with kidney disease, and with few therapeutic options. In humans, alterations in the events associated with normal kidney development leads to aberrant kidney structure and postnatally to abnormal kidney function. Little is known about the early cell populations of the developing kidney, thus further understanding of developmental processes is essential to guide regenerative approaches that will ultimately be successful. These studies have focused on several key issues such as understanding developmental timelines for key kidney markers, cell populations, and the interactive molecular and cellular milieu during ontogeny; new explant models to aid in developing the techniques necessary to enhance regeneration of kidneys damaged by obstructive renal disease; explant culture conditions using human embryonic stem cells differentiated towards early renal precursors; effective methods for labeling these cells for in vivo imaging in order to monitor engraftment and outcomes post-transplant; and effective methods to transplant renal precursors within a natural framework into defined anatomical locations of the kidney.